
Learning outcomes of this chapter
• Putting linked data in a larger context

• Getting out of a hype-driven view on technology

• Understanding the importance of data modelling

• Making sense of data models and their serialization formats

1 Introduction

Metadata managers and the software they use often seem to have a striking
resemblance with couples stuck in an unhappy relationship. During coffee breaks
at conferences and workshops on metadata within the library and information
science domain, it will not take you long to spot a circle of people engaged in
what seems to be some form of group therapy. Do not be afraid. Go ahead and
stand a bit closer. You will probably overhear typical phrases such as ‘We have
been struggling to create new metadata fields for years!’ or ‘My XML export is
terrible!’ Confronted with these laments, the group members will nod
understandingly and express their sympathy. Complaining about one’s software
is a popular point of discussion across the globe when collection holders come
together to discuss metadata. Ironically, just like old couples who think twice
about divorce due to the important emotional and economic consequences,
metadata managers often persist for years in the abusive relationship with their
software. They usually prefer not to move over to another software solution.
How different the ambiance in the digital humanities! Instead of complaining

about the difficulties encountered with their database, people active in the digital
humanities often are very proud about the information system they built to
manage a specific type of resource or collection. Susan Hockey even coined the
expression ‘“Me and my database” papers’. Anyone who has already attended a
DH conference is familiar with the phenomenon: a researcher who presents, in
tedious detail, how a database was developed to accommodate every peculiar

2
Modelling

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 11

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

feature of a collection. These speakers tend to be very proud of the database
they constructed and radiate love and passion for it.
Why do these two communities have such a different approach to the software

they use to manage cultural heritage resources and their metadata? Why do
collection holders constantly whine about their database, whereas digital
humanists express their satisfaction and even brag about the happiness they
found with their database?
These differences relate to the extent to which the model used to represent

an object and its metadata is deemed adequate or not. When we want to make
resources and their metadata available in a structured manner on the web, we
first need to decide what characteristics of theirs are the most important to be
represented. By doing so, we make an abstraction of the reality through the
development of a model.
In the cultural heritage context we mentioned, institutions are forced to work

with off-the-shelf software, since the development of a custom-built collection
management system is simply not economically feasible. The drawback of
working with existing software is that institutions often find themselves limited
in how they can describe their objects. Vendors have a commercial incentive to
develop generic software that can be sold to as many institutions as possible.
This implies that collection management software already prescribes a certain
explicit worldview, through the use of a pre-established model. It is therefore
not always possible to accommodate the specific requirements of an institution
and its collections, leading to frustration amongst collection holders.
In contrast, the DH community uses databases for limited and specific

research projects, as they tend to focus on the documentation and publication
of one specific type of resource or collection. Within these limited research
projects with a precise scope, the requirements tend to be so specific that it is
not possible to use off-the-shelf software. In this type of context, relational
database management software (RDMS) is often used to implement a tailored
model. The drawback of meeting all the precise requirements of such a project
are the relatively high development costs and the difficulty to maintain the
application over time. Investments are made in projects that very often cannot
be re-used.

1.1 Deciding where to put the semantics

What does this have to do with linked data? The examples above demonstrate
that both the use of a generic, standardized model and of a highly customized,
specific model come at a cost. The tremendous amount of effort the LIS
community has put into metadata standardization reflects how we have been
trying to find a sweet spot between the two approaches. As it will be
demonstrated through practical examples, the evolution from an unstructured

12 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 12

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

narrative to a highly structured representation of metadata requires the
development of schemas in order to make the metadata interoperable. By slicing
up unstructured descriptive narratives into well structured fields, we need to
render the meaning of the different fields (also called attributes) explicit by
documenting them in a schema. By structuring and atomizing metadata fields we
make them more machine-interoperable, but we also become more and more
reliant on the schemas when needing to interpret our own or someone else’s
metadata. It is precisely in this context that linked data need to be understood.
Through the adoption of a radically simple data model, abstraction can be made
of the traditional XML and database schemas we had to use in the past to
interpret and re-use data.

1.2 Getting away from a hype-driven view of technology

The adoption of a new technology is often illustrated in the form of the famous
Gartner hype cycle (Lynden and Fenn, 2003). The graphical representation of
the rise and decline of the popularity of a new technology draws attention to the
exaggerated expectations which often accompany its introduction. After the so-
called peak of inflated expectations, a technology tends to lose most of its appeal
on the market a couple of years after its introduction. It is only after an extensive
period that the technology reaches a stable level of adoption, based on its genuine
added value in a production environment. One of the goals of this book is to
teach you how to step away from a hype-driven view on technology by helping
you understand not only the exact added value of linked data, but also its weak
points.
Where should we situate linked data in this cycle? The recent enthusiasm to

connect heterogeneous resources and to draw in new information from external
knowledge sources perhaps recalls for some the unbounded enthusiasm the
cultural heritage sector had for the eXtensible Markup Language (XML) around
2000 and a couple of years later for web 2.0. In hindsight, we can now safely say
that both approaches have been (and continue to be) fundamentally important
for how we create and manage our metadata. However, we should also
acknowledge that neither XML nor the social web resolved all of the
fundamental problems underlying how we can connect resources from various
collections.
Despite a major overhaul of the general technological framework, illustrated

by other developments, such as the maturing of open-source collection
management systems and cloud-based hosting, for example, we are still very
much facing the same problems the cultural heritage community was discussing
almost five decades ago. For anyone working on the topic of digital cultural
heritage, it is a humbling experience to read about the discussions that were
taking place in the 1960s and 70s. In parallel with the creation of the Computer

MoDeLLING 13

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 13

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

Museum Network in 1967, a project was launched to create a common collection
management database that would be used by all participants of the consortium.
Numerous other initiatives have since been based on the same fallacy: if we all
use the same tool, our metadata will become interoperable. Again and again,
projects have demonstrated that even if people and institutions are using the
same tools and standards, they implement them in different ways to
accommodate the specific nature of their collections.
Are linked data here to break this vicious circle, or are we again confronted

with an overhyped technology? Before we answer that question, we need to
moderate the inflated expectations surrounding linked data. Practitioners trying
to get to grips with linked data principles are frequently frustrated when
confronted with the output of large-scale IT research projects. Huge volumes of
metadata and controlled vocabularies have been converted over recent years into
Resource Description Framework (RDF), producing billions of RDF statements.
Unfortunately, these so-called triple stores only unlock their value through the
use of a complex query language called SPARQL Protocol and RDF Query
Language (SPARQL). The purely technology-driven nature of many linked data
projects is leaving a bitter aftertaste amongst practitioners, who feel they need
a PhD in semantic web technologies in order to take advantage of linked data.

1.3 The world’s shortest introduction to data modelling

Let us therefore, in this chapter, step away from the merely hype-driven view
of linked data by choosing a more conceptual and historical approach. In order
to grasp the potential but also the limits of linked data, we need a better
understanding of the different data models which have been used over recent
decades to manage metadata. The advantages of RDF, the data model underlying
the linked data vision, can only be fully understood in the context of previous
data models. At the end of this chapter you will understand that the different
data models presented do not supplant one another, but continue to co-exist.
The overview of the different models should make it clear that relational
databases are here to stay, and will not be disposed of in favour of triple stores.
Technology vendors and IT researchers have a tendency to overemphasize the
role a new technology has to play. At the height of the popularity of XML, one
sometimes got the impression that the back-end of any type of information
system would become XML-based. A decade later, XML is criticized more often
than not, and new serialization formats such as JSON are often preferred. This
chapter will provide the world’s shortest introduction to IT fashion, in order to
help you see the wood for the trees.
We will specifically focus within the overview offered in this chapter on the

management of structured data, but be aware that the traditional barriers
between structured and unstructured data are becoming increasingly blurred.

14 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 14

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

For decades, different communities have been working independently from one
another on both topics. Database engineers focus on the optimization of the
management of structured data, whereas computational linguists develop
methods and tools to manage unstructured natural language in an automated
manner. The different traditions and views between the two communities can
be illustrated by analysing how both communities make use of XML. Computer
engineers see XML as a hierarchical tree in which structured data can be encoded
in order to facilitate the communication of data between machines. On the other
hand, computational linguists and digital humanists look at XML as a method to
insert small pieces of structure into an otherwise unstructured textual document.
Indicating where exactly in a full text the names of places or people can be found
allows scholars to automate to a certain extent the analysis of an unstructured
corpus. We will discuss XML in more detail in the section on meta-markup
languages later in the chapter. The traditional distinction between structured
and unstructured data is particularly problematic in the context of metadata.
For example, within a highly structured metadata record a descriptive field might
occur which contains a narrative of several pages of unstructured full text. Should
this metadata record be considered structured or unstructured?
The chapter will start with the most intuitive model for structuring data,

which is tabular formats. Due to the limitations of this approach, the relational
model was developed in the 1970s, remaining until today the standard to
represent and manage complex data. As will be explained over the next sections,
the appearance of the web towards the end of the 1990s catalysed the need for
data portability. Sharing data between different databases is a very tedious
process, for reasons which will be explained below. In order to facilitate the
exchange of structured data on the web, meta-markup languages, and XML in
particular, have been used from 2000 onwards. XML proposes a standardized
syntax for the automated exchange of structured data, but the actual use and
interpretation of the data can still be troublesome. The meaning of the elements
and attributes of the XML files need to be defined in a schema. The
interpretation of the schema remains a barrier for an automated consumption
of data across information systems on the web. It is exactly here where RDF
comes in. By adopting a data model which embodies the meaning of the data in
its most essential and stripped down form, there no longer is a need for an
outside schema to interpret and re-use the data.
Figure 2.1 compares the different models from a high-level perspective. You

could consider this figure as a synthetic overview of Chapter 2. We are conscious
that we are covering a lot of ground with this chapter. At times, it might be
challenging to understand the interaction and links between the four different
data models to be discussed. In order to help you put the individual sections of
this chapter into a bigger perspective, Figure 2.1 highlights in an abstract manner
the features of each data model. Even though each model has its own properties,

MoDeLLING 15

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 15

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

similarities have been highlighted insofar as possible. For example, rounded
shapes represent individual data values; rectangular shapes indicate model-
specific ways to add structure (with the exception of RDF, where arrows are
used). Different shades indicate data values that semantically belong together,
indicating how different models treat them.

1.4 every advantage has its disadvantage (and vice versa)

Be aware that this chapter explicitly does not represent the different models as
a linear succession of increasingly high-performing solutions to manage structured

16 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Figure 2.1 Schematic comparison of the four major data models

header

row

column

attributes

table/entitykey column

relation

root

parent

child

siblings

subject
object

property

Meta-markup languages
XML documents have a hierarchical
structure, which gives them a tree-
like appearance. each element can
have one or more children; there is
exactly one root element.

RDF
each fact about a data item is expressed
as a triple, which connects a subject to
an object through a precise
relationship. This leads to graph-
structured data that can take any shape.

Tabular data
each data item is structured as
a line of field values. fields are
the same for all items; a header
line can indicate their name.

Relational model
Data are structured as tables, each of
which has its own set of attributes.
Records in one table can relate to others
by referencing their key column.

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 16

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

data. In other words: please do not interpret the following sections of this
chapter as a story of how we have gone from an inadequate approach towards
the perfect solution. As with many things in life, advantages offered by a data
model often imply disadvantages (and vice versa). For example, the schema-
neutral feature of RDF comes at a big cost. Whether a data model (and the
methods, technologies and tools it comes with) is suited for you entirely depends
on the context of the problem you want to solve. To make things as clear as
possible, every model will be illustrated with the help of small examples of
metadata in relation to the work of Pablo Picasso.1

1.5 Data models and their serialization formats

Before we proceed to the overview of data modelling, it is important to clearly
distinguish each model conceptually from the formats that have been developed
to serialize the data model. The serialization process converts data structures
into a format. The format allows the translation of the information you are
representing into a stream of bits that can be manipulated by software,
communicated over a network, etc. The format allows a conversion from the bit
level back into the original data.
The difference between a model and a serialization can be compared to a dish

and its recipe. The in-memory model is the thing itself and is accessible for
manipulation – or is immediately ready to be eaten, like a prepared dish. A
serialization contains all necessary elements to construct the in-memory model,
just as a recipe contains all the information you need to prepare the dish. Table
2.1 gives an overview of the different data models and their serialization formats
which will be discussed over the next sections.

2 Tabular data

Suppose you were given a collection of resources, such as photographs, books or
DVDs, and were asked to describe the collection. What would be the most
intuitive and natural thing to do? Chances are high that you would take a sheet
of paper, or create a spreadsheet on your computer, and create columns in which
you will aggregate the most important metadata of the resources, such as title,
creator, date, etc.

MoDeLLING 17

Table 2.1 Data models and their serialization formats
data model serialization formats
tabular data CSV, TSV
relational model proprietary binary files
meta-markup languages XML, SGML
RDf Turtle, N-Triples, RDf-XML

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 17

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

2.1 Model

Conceptually, the world view you create with tabular data is comprised of
columns and rows. The intersection of a column with a row gives meaning to the
data contained in the particular cell. Figure 2.1 illustrates this data model on an
abstract level. There is only one modelling dimension, consisting of the fields in
the first header row. Each row contains data from different semantic entities,
which we can also refer to as records. This is why tabular data are often referred
to as flat files. Coming back to our concrete example, it is an intuitive act to use
this model and to draw up a list as presented in Table 2.2, illustrating how you
might develop a tabular overview of your resources.

Over centuries, catalogues and indexes were encoded in this tabulated form.
The list, as most people would call tabular data, can probably be considered as
the oldest information technology. Drawing up lists organized in columns is still
often the first step taken when brainstorming and developing ideas about what
metadata elements should be used to document a resource. Why is this such
an intuitive data model? Tabular data offer the big advantage that they are
almost self-explanatory. When reading a catalogue or an index in this format,
you have a natural tendency to read in a horizontal manner by focusing on one
line of the catalogue and reading from left to right the information gathered in
the different ‘boxes’. This allows you to get an immediate overview of all the
different metadata elements (in our table: title, creator and date) concerning
one specific object. Semiologists or linguists would refer to the importance of
the syntagmatic relations. Through the combination of different elements,
meaning is created in the sense that we understand what an object is, when it
was created and by whom. A vertical reading, gazing up and down the columns,
allows you to get a sense of the different values of one specific metadata
element. On this level, the so-called paradigmatic relations operate. These
relations cluster members of the same category.
The difference and interaction between syntagmatic and paradigmatic

relations might seem like a pedantic academy side note. Keep in mind that they
play an important role in understanding the difference between the use of
unstructured descriptions, which we can refer to as narratives, and structured
metadata fields, which have been sliced up to make them more machine-
processable. Lev Manovich drew attention to the fundamental difference
between these two forms of presenting information:

18 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Table 2.2 example of metadata encoded as tabular data
title creator date collection
Guernica Pablo Picasso 1937 Museo Reina Sofia
first Communion Picasso 1895 Museo Picasso
Puppy koons, Jeff 1992 Guggenheim
… … … …

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 18

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

As a cultural form, a database represents the world as a list of items and it refuses to
order this list. In contrast, a narrative creates a cause-and-effect trajectory of
seemingly unordered items. Competing for the same territory of human culture,
each claims an exclusive right to make meaning out of the world. The database (the
paradigm) is given material existence, while the narrative (the syntagm) is
dematerialized. Paradigm is privileged, syntagm is downplayed. Paradigm is real,
syntagm is virtual.

Manovich, 2001, 231

Traditionally, people have privileged the form of narrative when communicating
information, but the massive presence of database-driven applications on the
web is reversing the situation. This evolution is very much embodied in how our
metadata practices have evolved. From the beginning of the 20th century, our
cultural heritage institutions have started to decompose the lengthy narrative
descriptions drawn up by curators and transferred them to card catalogues and
database records. This evolution drastically helped to facilitate search and
retrieval, but actually making sense of a complex object is still based on the
unstructured description. Manovich goes too far when presenting the two forms
as exclusive and competing. It is the introduction of database-driven websites
that made the advent of web 2.0 applications possible. As Chapter 5 will
demonstrate, user comments can offer a valuable enrichment of the limited
metadata an institution can provide, whereas named-entity recognition (NER)
can currently be applied to facilitate complex search and retrieval procedures
based on unstructured full text in natural language.

2.2 Serialization

The most popular serialization formats of tabular data are comma-separated
values (CSV) and tab-separated values (TSV). The only, but important,
difference between these two formats are the characters, appropriately called
delimiters, used to indicate the separation between values. As their name
indicates, CSV files use a comma as a delimiter, and TSV tabs. Please note that
any type of character can be used as a delimiter. The CSV data from Table 2.2
are separated by a comma and rows are ended with a line break as follows:

title,creator,date,collection

Guernica,Pablo Picasso,1937,Museo Reina Sofia

First Communion,Picasso,1895,Museo Picasso

Puppy,"Koons, Jeff",1992,Guggenheim

The TSV version would look exactly the same, but the commas would be replaced
by tab characters. And strictly speaking, the quotes around Koons, Jeffwould

MoDeLLING 19

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 19

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

not be necessary because the comma has no special meaning. If, however, a value
needs to contain an actual tab character, quotes would be necessary.

2.3 Search and retrieval

What are the implications of this data model for search and retrieval of metadata?
A quick look at the metadata in Table 2.2 gives an overview of the limitations of
the tabular file approach. For example, the name of the creator is expressed in
different manners (‘Pablo Picasso’ and ‘Picasso’), as we encode the same reality
every time when describing a new object this artist made. For a human being, it
is straightforward to map these two different representations to the same reality.
You have probably also noted the presence of “Koons, Jeff”, in which quotes are
used to protect the comma separating the family and the first name.
When performing a full-text search on a string of characters, an algorithm will

have more problems to deliver good search results. Let us therefore suppose that
you want to update your metadata and encode the name of the creator in a
uniform manner. Now imagine you do not have three records (as it is the case in
our example) but a couple of hundred thousand . . . Managing your metadata in
a tabular list would imply that you would need to go through all these records
to see where one of the different spellings of the creator’s name appears and
update it if needed to the preferred spelling. This working method is bound to
introduce inconsistencies in your metadata. On a computational level, search and
retrieval is very inefficient with this approach, as again the totality of your
metadata records have to be checked to see whether they contain a specific
value. Neither do tabular files offer the right tools to impose rules on how we
encode values, resulting in inconsistencies in the way we encode metadata.
Problems only become worse when you start to think about searching across

multiple files in this format. Another institution might have its own tabular data
which contains relevant information for you, but how could you possibly perform
a query across independent flat files in a consistent manner? Proficient users of
Microsoft Excel could make use of macros and look-up tables to create links
across multiple independent files, but these functionalities cannot be used
outside Excel. This implies that you no longer have a platform- and application-
independent format.

2.4 Change

How can tabular data evolve through time? The structure of catalogues and
inventories does not change every month, but we could easily imagine at some
point that we need to encode extra information, such as the technique (oil
painting, aquarelle, etc.). Within the context of tabular data, we can simply add
an extra column describing this new feature of the resources we are

20 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 20

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

documenting. If for some reason a column is no longer used or no longer contains
relevant information, it can be deleted without any consequences for the rest of
the data. Adding or deleting a column does not require you to make any
modifications in the structure of the file. In this regard, an information system
based on tabular data is resilient to change.

2.5 Implementation

Tabular data is one of the easiest conceptual formats, and as such, any software
package will offer support. The most common form are spreadsheet applications
such as Microsoft Excel, which in essence offer one giant table that can be
modified. All spreadsheet software offers the possibility to export to TSV or
CSV, albeit of course with the loss of formulas (cells that are calculated based
on other cells), formatting (such as colour and borders) and functionalities such
as macros, which we mentioned previously. Data types are also lost: all cell
contents are stored as text.
Even with the simplest data model, a lot can go wrong in practice. Several

elements are noteworthy here:

• Data can be separated by a comma but depending on a system’s local
settings, this might actually be a semicolon! For instance, in many European
languages, a comma instead of a dot is used as decimal separator in numbers
(so 1,5 is actually 1½). On these systems, it would thus be impractical to
use a comma as column separator, hence the choice of a semicolon – so
CSV is not always true to its name. In practice, CSV has come to stand for
any separator-delimited type, which confusingly also includes TSV.

• Rows end with a line break. Unfortunately, different systems can produce
different results. For instance, on Windows systems, a line break actually
consists of two characters (a carriage return followed by a newline),
whereas on Linux-based systems, it is just a single character (only a
newline). Additionally, Linux-based systems might expect the last line to
end with a line break, while this is not necessary on Windows.

• There is no way to indicate the difference between the header row and
the rest of the data. This means that we will have to tell this explicitly to
the parser.

• If the field value itself contains a comma or a line break, such as Koons,
Jeff here, the value is typically enclosed in double quotes, so it can be
parsed correctly as a single value and not as multiple rows or columns. Note
that not all parsers support both cases; line breaks, especially, might be
confusing. In general, enclosing any field with double quotes is allowed,
even if no special characters occur within the value.

• Another dangerous issue is character encoding. Different systems use

MoDeLLING 21

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 21

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

different byte codes to represent characters, in particular if these characters
lie outside the traditional ASCII alphabet, such as accented letters or
Japanese characters. If one system has written a file in a certain encoding, it
is important for another system to use the same encoding to read the file.
Otherwise, an accented character in one encoding might accidentally be
transformed into one or more other characters in a different encoding. This
phenomenon is called mojibake, the incorrect presentation of characters due
to an encoding mismatch. Chapter 3 will explore how the above-mentioned
issues impact metadata quality and what can be done to mitigate them.

• What if the field value contains a double quote? This is solved by escaping
the quote, adding a character in front of it that signals the next character
has no special meaning. In the case of CSV, this escaping is done by
doubling the quote. For instance, the value width: 7", height: 5" is
encoded as "width: 7"", height: 5""", wherein each literal quote is
preceded by another.

• The main problem with CSV is that there are many ways to encode a file.
The Internet Engineering Task Force (IETF) proposed a standard way of
serializing CSV (Shafranovich, 2005), and this format can be read by most
parsers. However, this by no means implies that all generators will follow
this standard. Fortunately, most parsers are adaptive: they apply a heuristic
on the file in question to determine which conventions were used. For
instance, if every line in the file contains an equal number of semicolons, it
is likely to assume that the delimiter is a semicolon. Also, if the third
column always consists of decimal digits, except the first row (as in our
example), then it can be assumed that the first line contains header data.
Of course, none of these strategies are perfect; in practice, human
verification is necessary for correct parsing.

3 Relational model

The relational model was developed to deal with the issues related to
redundancies and inconsistencies as described above. Developed at the end of
the 1970s, the relational model has been by far the most successful approach
for managing structured data, and will continue to be used in the decades to
come.

3.1 Model

The model asks you to take a step back from the individual metadata recorded
in the tabular format and to identify on a higher level what the different entities
are in the reality that you want to represent. We may define an entity as the
‘type of information that varies independently of another’ (Ramsay, 2004). Each

22 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 22

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

entity is characterized through the use of attributes. As depicted in Figure 2.1,
entities are connected through relations to one another. Every record contains a
unique key per table, which other records can use to refer to it in a relation.

3.2 Design methodology

Building a relational model is a difficult task that requires a lot of experience.
Nonetheless, there are some guiding principles that you can use:

• The first task is to discover the entity types that the database will contain.
Typically, entities correspond to independent concepts in the world of
which there will be many, and each one has properties of its own.
In our example, it is certain that ‘Work’ will be an entity type, as the
database will contain several works. It is also likely that ‘Creator’ will be an
entity type, as it is independent from Work and there will be many of them.
However, an entity type of ‘Country’ will probably not be necessary, as we
will only need the country’s name and no other properties. However, for
other use cases, it might be meaningful to encode ‘Country’ as an entity
type.

• For every entity type, a table will be created in the database. Each row in
the table will have a unique identifier, often a numeric value that is
automatically generated. Each property of the entity will be a column in the
table, and each column can have a value type. Our ‘Work’ table might have
a textual field for the title and a date field for the creation date (or a four-
digit field if we only plan to store the year).

• Next, one-to-many relationships must be modelled. They provide a
mechanism for a record in a table to link to one record in another table, and
the record in the second table can receive several such incoming links. As
each entity has a unique identifier, we can add a column to the first table
that will contain this identifier. That way, the objects in the first table can
point to an item in the second table. For instance, the ‘Work’ table should
contain a ‘Creator’ column that stores the identifier of the creator. That
way, each work can be associated with one creator, and each creator can
then be associated with several works.

• Finally, many-to-many relationships should be described. As fields in
databases are traditionally not multi-valued, we must find another way for a
record in a table to point to several records in another table. This is done by
having a third relationship table, which has one column for identifiers of the
first table and one column for identifiers of the second table. That way, we
can find all items that belong together by traversing the rows of this table.
Additional columns might describe properties of the relationship. In case
works are authored by many creators, we could opt to represent them as a

MoDeLLING 23

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 23

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

many-to-many relationship. Then, we would have a third table called
‘Creatorship’ with columns ‘work’ and ‘creator’ that store the respective
identifiers. We might add a textual column ‘role’ describing how the person
was involved in the creation of the work.

The above points are merely guidelines. In practice, there are many possible
motivations behind the choice for a certain design decision. There will always
be trade-offs between optimal modelling flexibility, performance and simplicity.
This is well illustrated by the option of whether to allow multiple creators for a
work. This might allow you to describe the reality more closely, at the expense
of a more complex (and possibly slower) data model.
Let us come back to our example. In order to have a sufficiently complex

scheme, extra attributes, such as style, were added, as in Figure 2.2.
It should be clear that there is no such thing as one unique and perfectly
adequate model, as the same reality can be interpreted in multiple ways.

Depending on the importance you give to an aspect of the reality you are
modelling, you either decide to consider it as an entity or as an attribute. Despite
the simplicity of the scheme in Figure 2.2, many readers of this book probably
would come up with different versions of the scheme. For example, one could
decide to reduce the entity Collection to an attribute of the entity Work, if you
do not consider the address as an independent aspect that needs to be

24 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Creator
ID first name surname birth year death year

43 Pablo Picasso 1881 1973

57 Jeff koons 1955 null

… … … … …

Work
ID title creator collection year style

5 Guernica 43 20 1937 cubism

7 first Communion 43 22 1895 realism

16 Puppy 57 18 1992 conceptual

… … … … … …

Collection
ID name address

18 Guggenheim bilbao

20 Museo Reina Sofia Madrid

22 Museo Picasso barcelona

… … …

Figure 2.2 An example entity relation model with the relationships highlighted

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 24

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

documented. The process of placing separate entities in separate tables is called
normalization. Unfortunately, the more tables that need to be accessed to
reconstruct the related metadata of an item, the slower operations will become.
Therefore, a meaningful balance should be found between what data will be
stored in a single table and what data is stored as a relationship.
The added complexity on the modelling level is made up for by the advantages

offered by having a single record for an entity, that can be referred to with a
unique ID. For example, every time you need to refer to the fact that an object
is housed in a specific collection, you do not have to re-encode the metadata in
relation to the address of where the collection is managed and other attributes
of the entity Collection. You simply refer to the ID of the collection, and the
same applies to other entities such as Creator. This approach ensures a lot more
consistency. Those IDs are typically indexed to ensure the corresponding rows
can be fetched in a fast way without traversing the entire table.

3.3 Implementation

Software built on top of this model, referred to as relational database
management software (RDMS), has been extensively developed over the last
decades and is currently at a very mature stage. Everyone has probably heard at
some point about MySQL, the most popular open-source RDMS used for web
applications, or MS-SQL, a proprietary RDMS developed by Microsoft. Another
well known manufacturer is Oracle. Collection management systems, archival
inventories and library catalogues are all built on top of a RDMS.
Most database systems work in a client-server set-up, where the server runs a

RDMS and the client interacts with it using SQL statements. Consumer and
small business applications, such as Microsoft Access, simplify the structure by
offering a graphical user interface that works directly on top of a local database
file. For regular RDMS, graphical interfaces for clients exist as well, but the
communication underneath is done in SQL.
For instance, a table in MySQL can be created with:

CREATE TABLE Work (

id INT AUTO_INCREMENT PRIMARY KEY,

title VARCHAR(100),

creator INT,

collection INT,

year CHAR(4),

style VARCHAR(40)

);

This makes a new table called Work with an integer id column (INT), a textual

MoDeLLING 25

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 25

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

title column (VARCHAR(100), meaning a string of characters with variable length,
maximum 100), and integer creator and collection columns a 4-character year
column, and a 40-character style column. The id column is special, since it
should provide a unique identifier for each record. Therefore, it has the labels
AUTO_INCREMENT (so new numbers are assigned automatically) and PRIMARY KEY
(so the database knows that this is a unique field).
To insert data in this table, we can use:

INSERT INTO Work (title, creator, collection, year, style)

VALUES (‘Guernica’, 43, 20, 1937, ‘Cubism’);

We supply the table name, followed by the names of the fields and then the values
for these fields. Strings are surrounded by single quotes (and single quotes within
strings are escaped by a backslash). Note how we did not supply a value for the
id field, as this value is automatically generated (and will default to 1, 2, 3, … on
an empty table).

3.4 Search and retrieval

After several records have been inserted, we can retrieve them with SELECT
queries. For instance:

SELECT * FROM Work;

will select all records in the Work table. If we only want the titles of works by
Picasso (assuming he has identifier 43 in the Creator table), we can do:

SELECT title FROM Work WHERE creator=43;

This is only a basic introduction to SQL, as end-users are only confronted with
predefined SQL queries accessible through a graphical interface of a collection
management system. However, it is important to understand through the
example the logic behind the SQL query language. Section 5 will build further
on this example to illustrate how the SPARQL query language works.

3.5 Change

The previous section on the tabular format described how little impact change
has on the structure of a flat file. Adding new columns or deleting existing ones
does not fundamentally alter how the tabular data can be used. The situation
could not be more different with relational databases. Adding an extra table
requires the database manager to rethink the entire schema of the database, as

26 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 26

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

adding an extra table might imply a degrading of the normalization process.
Let us come back to our example. Imagine we want to add an entity

ArchivalItemwhich describes the archival holdings of an artist that the institution
possesses, such as correspondence, notes, personal photographs, historical press
clippings, etc. How do we update our database with minimal effort? We can
create a table ArchivalItem with the attributes ID, document type, year, creator,
and collection. Then the change can happen by just adding this single table.
However, that table would carry a considerable overlap with Work, as both have
a creator, collection, and year. This information spread becomes difficult to
manage in the end. If we want to respect the normalization requirements, we
cannot just add extra tables, but we also need to modify the existing tables.
Figure 2.3 shows a better integrated solution: the common attributes of Work
and ArchivalItem are placed into a separate Asset table. However, this means
that the existing table and data structure has to be modified.
Apart from ensuring the normalization of the new database schema, the

modifications also impact external systems, such as the public front-end built to
give access to the data on the web. Performing these types of updates and
modifications every couple of months can be very cumbersome. In practice, these
modifications are often avoided, as there is no time to fundamentally rethink the
structure of the database. In this context, people often rely on lightweight and
ad hoc solutions, such as creating a standalone spreadsheet. This type of short-
term decision causes, over a period of years, tremendous issues with data
consistency, as reference data are scattered across different applications. We can

MoDeLLING 27

Work
ID title style

5 Guernica cubism

16 Puppy conceptual

… … …

ArchivalItem
ID document type

32 notebook

… …

Asset
ID creator collection year

5 43 20 1937

16 57 18 1992

32 43 20 1948

… … … …

Figure 2.3 To support archival items in a consistent way, the creator, collection, and year
fields must move from the Work table into a shared Asset table

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 27

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

therefore conclude that it is not a trivial matter to update and maintain a database,
due to the complexity of modifying the database schema.

3.6 Sharing

As referred to in the beginning of this chapter, institutions already thought about
interoperability between collections right from the start when RDMS were
implemented in some pioneering cultural heritage institutions. There was (and
there still is) a strong belief that acquiring the same collection management
system provides the needed basis for interoperability. However, the
customization of these software tools to accommodate specific requirements of
each institution more often than not resulted in different approaches regarding
the use of metadata elements. This made the exchange of records between
institutions, which might have been using exactly the same software,
problematic. Letting databases talk to one another and share their content is a
complex matter, regardless of the application domain.
At this stage, it is important to point out the difference between binary and non-

binary files. The previous section illustrated how tabular file formats make use of
text files, allowing you to open a .tsv or .csv file with any standard text editor or
spreadsheet software, making the exchange of metadata very straightforward.
Databases, however, are stored in binary files which introduce a dependency on a
specific software application. If you wanted for example to re-use a database of an
institution, you would be obliged to use the same RDMS. Licences for proprietary
RDMS easily cost around US$10,000 and you could potentially run into
compatibility problems if you used different versions of the same software. You
could also create a Structured Query Language (SQL) query, allowing you to create
a data dump, and to import it afterwards in another application. But even if a
standardized version of SQL exists, be aware that vendors implement the standard
in varying ways. Certain RDMS have their own proprietary extensions, for example
for column types, leading again to potential data compatibility problems.
We can therefore conclude that the interoperability of databases is quite

problematic. Fortunately, methods have been developed to facilitate the export
and import of structured data from and into different databases.

4 Meta-markup languages

Before we get into the details of how XML is used to facilitate the exchange of
structured data, this section will make quite an extensive detour to the origins
of markup and meta-markup languages. XML is probably the most abused and
incorrectly used acronym (apart from RDF) at meetings in the cultural heritage
sector. Some people consider it a programming language, others think it will
automatically make their metadata smart and semantic. A broader view on the

28 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 28

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

origins of XML will allow you to understand the tremendously important
difference between applying markup and makeup. Understanding the difference
between a data- and a narrative-centric view of XML will also allow you to better
understand why tool or standard A is better than tool or standard B, depending
on whether you are managing text or data. Moreover, the evolution of XML is
very much intertwined with the development and the future of HTML. The
relevance of initiatives such as Schema.org or the OpenGraph protocol will also
be better apprehended with a good understanding of the global context of meta-
markup languages.

4.1 Adding structure to content

In parallel with the work on the development of relational databases for the
management of structured data, producers of large volumes of unstructured
texts, such as the pharmaceutical or aeronautics industry, developed the concept
of a meta-markup language throughout the 1970s and 1980s. These industries
are confronted with the need to manage complex and voluminous
documentation of production and safety guidelines. In order to streamline the
typesetting of these complex text documents, the idea was developed to make
use of markup to indicate the presence of structural elements (title, subtitle,
paragraph, etc.) inside a document.
Markup can be thought of as annotations added to a document. A manuscript

would be annotated with signs indicating how specific parts of the text should
be displayed. Through the use of delimiters (remember the role these play within
the tabular model), such as angle (<>) or square brackets ([]), the markup is
clearly distinguished from the text itself. The characters used to indicate the
markup are purely a matter of convention, one could also use other characters
such as $ or *.
For example, if a specific string of characters which represents the title of a

section should be printed in a large bold font, you could have the following
HTML markup:

 Introduction to metadata

Your browser would then render the text as:

Introduction to metadata
The above example is a typical illustration of how markup is merely used as
makeup. The markup simply indicates how one particular string of characters,
in our example ‘Introduction to metadata’, should be presented. Imagine you
have a document containing several hundreds of section titles. Instead of

MoDeLLING 29

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 29

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

presenting them in size 20, you actually prefer to have them slightly bigger.
Making this modification with the above approach obliges you to manually
update the markup for every section title in your document.
Conceptually, a whole new world of opportunities for automated processing

appears when the markup focuses on the function of a specific string of characters
within the structure of a document. Instead of hardwiring how every individual
element of a text should be presented, the markup can indicate the role it plays
within a text. Let us re-use the same example and apply this time genuine
markup and not makeup:

<h1>Introduction to metadata</h1>

We no longer indicate how the string of characters ‘Introduction to metadata’
should be printed. Instead, we specify the role this string plays within the text,
by stipulating that ‘Introduction to metadata’ is the title of a section. You can
re-use the markup element h1 for all the titles of sections within the document.
You only specify once how this specific structural element of your text should
be formatted. This specification can take place either in the header of the
document file or in a separate file linked to your document, which could contain
the following definition:

h1 {

font-size: 20pt;

font-weight: bold;

}

This gives you the tremendous advantage that you can define in one central place
how a specific structural element within your document should be displayed,
from where it will then be implemented in a coherent manner across the entire
document. Once the definition of the layout of a document is contained within
a separate file, one can imagine having multiple files linked to a document in
order to automatically switch between different designs. This is the idea behind
the ‘write once, publish many’ principle. In a web context, it lets you
automatically switch between a website with bigger or smaller fonts, or a
standard version of a web page packed with images and colours and a Spartan
page optimized for printing in black and white. The content stays the same, you
just use another style sheet which indicates how the different elements of the
web page should be rendered.

4.2 Model

Now that you understand the purpose of markup, we need to conceptualize its

30 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 30

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

use. In order to make markup machine-processable, you cannot just randomly
put commands contained within delimiters inside a document. The markup
needs to respect a logical and consistent structure to be processed automatically.
Conceptually, you can think of marked-up documents as trees. They have one

root and consist of branches which themselves contain smaller branches, as
depicted in Figure 2.1. A node and its directly descending nodes have a parent–
child relationship; all directly descending nodes of a parent are siblings. The
hierarchical nature of this data model is central: child elements inherit by default
all of the characteristics which have been predefined on the level of the parent
element. However, this default inheritance can be overridden if a specific
characteristic is defined on the level of the child element.

4.3 Meta-markup

Why have we called this section ‘meta-’ markup languages? The model described
above asks you to define a hierarchy of structural elements which you could
consider as the building blocks of the documents you manage. Thinking about
books, one could easily say that the element ‘book’ represents the root level of
the document, which encloses all other elements. A child element of the root
would be ‘chapter’, which itself consists of a title and multiple sections. We
could imagine that this standardized vision of a book could be re-used by many
people. But perhaps you like to use an epigraph at the beginning of every chapter,
whereas other people would never make use of this element.
The early developers of meta-markup in the 1960s and 1970s foresaw that

different application domains would have very different needs for the structural
elements of their documents. For example, stanzas are an important structural
building block of classical poetry. The documentation of production phases and
testing of drugs might have specific elements which structure the quality
procedures that need to be respected during the development of a drug.
It was therefore decided not to predefine all potentially interesting markup

elements. Instead, a syntax and grammar was developed which allows everyone
to develop their own specific markup language. Hence the use of meta, which
refers to something at a higher, more abstract level. Out of the idea of a meta-
markup language, the Standard Generalized Markup Language (SGML) was
born. In hindsight, the heritage and impact of SGML, adopted as an ISO
standard in 1986, has been enormous. SGML was used as a conceptual
foundation for all the major standards which made the web a success: HTML,
XML and CSS. Ironically, SGML has been considered by most as a failure, as
the industry never largely adopted the standard due to its complexity. Bob
Boiko’s metaphor ‘SGML became like those backwoods blues players of old to
whom the pop stars give honor but no money’ sums up the situation quite
correctly (Boiko, 2005). The use of SGML required a thorough analysis of the

MoDeLLING 31

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 31

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

domain and content to be represented, followed by an intensive modelling
exercise in which all essential structural elements of a document had to be
predefined in a schema. The implementation itself was terribly expensive, due
to costly software and the need for highly specialized staff. The success of HTML
can be linked to exactly the opposite conditions: anyone can write HTML and
the tools are freely available.

4.4 The hypertext Markup Language

Around 1990, Tim Berners-Lee developed and implemented HTML. SGML was
a major source of inspiration, but for reasons of simplicity a fixed set of elements
was defined, representing the basic building blocks of a web page (e.g. <head>,
<title>, <body>, <link>). Notice how these elements indicate structural
elements of a web document, and do not stipulate any layout. This markup is to
be parsed by a web browser, which is responsible for interpreting the HTML
tags and for displaying the web document on the computer screen. HTML is
therefore a markup language (and not a meta-markup language). This implies
that you can only make use of a pre-defined set of tags which can be interpreted
by a web browser. Nothing holds you back from inventing your own HTML tags,
but in order to use them you would need to build your own browser.
Needless to say, HTML was a success. However, after a decade Berners-Lee’s

brainchild was corrupted from a markup into a makeup language. The focus on
the aesthetics (and not on the semantics or structure) of web pages was beginning
to undermine the potential of the web as a global information system. What
happened?
From the mid to the end of the 1990s, web publishers were building up the

dot com bubble. During this period, one of the biggest business model underlying
the web was born. Within this model, the value of a company does not lie in its
net income acquired through the commercialization of a product or a service
offered to its user base. The mission of a company is to rapidly build up a user
base by offering a free commodity (email, social networking, photo sharing, etc.).
This business model is based on the assumption that the company will be able
to monetize its customer base at a latter stage through advertising and the
aggregation of consumer profiles for example.
With this in mind, it is easy to understand why web developers focused in the

first place on an attractive and distinctive layout. This tendency played an
important role in the browser war between Netscape Navigator (precursor of
Mozilla Firefox) and Microsoft Internet Explorer. In order to attract the biggest
user base, both browsers developed, independently one from the other, HTML
elements that would render web content attractive and original. To fully
understand the impact of these practices, do the following small exercise. Launch
Notepad or any other simple text editor and encode the following HTML:

32 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 32

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

<html>

<blink>This text only blinks in Firefox</blink>

</html>

Make sure to save the document with the .html extension. Now start up the
Firefox web browser and open the HTML document you just created.
Congratulations, you have just created your first makeup’ed web page: the text
contained within the <blink></blink> tags should blink. Now open up the same
document in any other web browser (Microsoft Internet Explorer, Google
Chrome, Apple Safari...). Nothing happens. The browser understood that there
are tags but does not understand them and therefore just displays the text
contained within them.
The blink element is a non-standard presentational HTML element introduced

in Netscape Navigator, but not supported by other browsers. Anyone who is old
enough to have surfed the web in the late 1990s will think fondly of all the weird
and utterly user-unfriendly websites which held flashing and hovering content.
On top of that: exactly the same page displayed differently across browsers.

4.5 The eXtensible Markup Language (XML)

The interoperability issues described above, coupled with the exploding volume
of HTML documents containing no exploitable structure or semantics, resulted
in a growing unease within the information retrieval and information science
community. A standard was needed to ensure a more structured web, and XML
saw the light. The standard is built as an application profile of SGML, but
simplifies its use. An effort was made to keep 80% of SGML’s functionality with
only 20% of its complexity.
XML being a meta-markup language, realizes that user communities have the

possibility of defining their own markup elements, hence the adjective ‘extensible’
in the name of XML. The big advantage of XML, especially at the time of major
incompatibility issues on the web, is its platform and application independence.
With its open and standardized format, XML allowed the web community to
make a big step forward with the publication of structured content.

4.6 Designing XML documents

Similarly to relational database schemas, the design of XML documents also
involves extensibility and simplicity trade-offs. The main discussion in XML is
whether to model an entity as an element (serialized as tags surrounded by angle
brackets) or as an attribute (key/value modifiers of a tag). Every XML document
begins with an XML declaration, a processing instruction that identifies the
document as a specific XML version. Processing instructions are special tags that

MoDeLLING 33

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 33

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

start and end with questions marks inside the angle brackets. For instance, a
minimal XML document for our collection would be:

<?xml version="1.0" encoding="UTF-8"?>

<Art title="Modern art"/>

So what we see here is the XML declaration, followed by an Art tag that has a
title attribute with value Modern art. The Art element is the root element of
our document, and every XML document should have exactly one root element.
Since there are no other elements yet, we have made Art self-closing by including
a slash before its ending angle bracket. Note how we were free to choose the
names of the tag and the attribute, in contrast to more specified languages such
as HTML. That does however not imply total freedom: the mandatory version
attribute and its value are predetermined by the XML standard. The encoding
attribute is not mandatory, but as we said before when explaining tabular data,
plain text files always have a risk of being interpreted in a different encoding
from that intended. Therefore, by specifying the encoding, we ensure that the
interpretation will happen uniformly.
The root element is not difficult to get right, but modelling questions arise

when we add data elements. For instance, let’s add a work to the collection.

<?xml version="1.0" encoding="UTF-8"?>

<Art title="Modern art">

<Work title="Guernica" year="1937" creator="Pablo Picasso"

collection="Museo Reina Sofia" location="Madrid"/>

</Art>

The hierarchical structure of XML documents now becomes apparent: the Work
element is a child of the Art element. Initially, we have chosen to model the
work’s elements as properties. However, this might not prove extensible enough.
For instance, it is difficult to add more structure to the creator field, and there
is currently no relation between the collection and location fields. The
opposite approach would be to model everything as child elements:

<Art title="Modern art">

<Work>

<Title>Guernica</Title>

<CreationDate>

<Year>1937</Year>

</CreationDate>

<Creator>

<FirstName>Pablo</FirstName>

34 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 34

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

<LastName>Picasso</LastName>

</Creator>

<Collection>

<Name>Museo Reina Sofia</Name>

<Location>Madrid</Location>

</Collection>

</Work>

</Art>

This leaves us maximum flexibility to extend the document at any point.
However, this also comes at a cost: the hierarchy is now relatively deep to
express simple concepts, even for straightforward properties such as a year of
creation. Even though the original design goals for XML state that ‘terseness in
XML markup is of minimal importance’, it might be important for our
application. Although software does not have any more difficulty parsing
hierarchies as opposed to attributes, unnecessary complexity is never an asset.
Understanding the XML document at a glance becomes more difficult for
humans (and XML was designed to be read by both humans and machines), and
the job of programming the format reader on top of the XML parser becomes
more complex. In practice, a compromise often works best:

<Art title="Modern art">

<Work title="Guernica" year="1937">

<Creator firstName="Pablo" lastName="Picasso"/>

<Collection name="Museo Reina Sofia" location="Madrid"/>

</Work>

</Art>

Here, we have chosen to model all values that will not be decomposed or require
further properties as attributes. For instance, a work’s title does not require
further description, but we would add additional information to a Creator, such
as date and place of birth.
This might remind you of the discussion on relational model design, where

we first determined entity types. Indeed, the decision is similar: things that
would end up as entities in databases are likely represented as elements in an
XML document as well. In contrast with databases, XML documents are more
flexible and there is an even larger grey area for modelling choices. As always,
this extended flexibility comes at a cost: databases are made for rapid data
search and manipulation; searching XML documents is more than an order of
magnitude slower.
Speaking of databases, you might wonder how to represent relations in XML. The

answer is that you are free to choose that, but some choices are wiser than others.

MoDeLLING 35

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 35

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

For instance, we can simply continue the model as above and add another work:

<Art title="Modern art">

<Work title="Guernica" year="1937">

<Creator firstName="Pablo" lastName="Picasso"/>

<Collection name="Museo Reina Sofia" location="Madrid"/>

</Work>

<Work title="First Communion" year="1895">

<Creator firstName="Pablo" lastName="Picaso"/>

<Collection name="Museo Picasso" location="Barcelona"/>

</Work>

<Art>

However, this duplication of information is harder to maintain and it might lead
to errors. In fact, the last name of the creator of the second work is incorrectly
spelled ‘Picaso’, even though it appears correctly in the first. Therefore, it makes
sense to model the information only once and refer to it using identifiers:

<Art title="Modern art">

<Work title="Guernica" year="1937" collectionId="Co20">

<CreatorRef creatorId="Cr43"/>

</Work>

<Work title="First Communion" year="1895" collectionId="Co22">

<CreatorRef creatorId="Cr43"/>

</Work>

<Creator id="Cr43" firstName="Pablo" lastName="Picasso"/>

<Collection id="Co20" name="Museo Reina Sofia" location="Madrid"/>

<Collection id="Co22" name="Museo Picasso" location="Barcelona"/>

</Art>

In contrast to database systems, you are responsible yourself for the correct
assignment and use of identifiers. Note how we modelled collectionId as an
attribute of work, but Creator as a child element. The rationale behind that is
that a work only resides in one collection, whereas there might be many creators
of a single work, and a separate element allows us to specify a role for each of
them (as with the many-to-many relationship of a database schema). This design
choice allows the specification of multiple creators, since attribute names on
an element must be unique.

4.7 XML Schema

The flexibility of XML documents might seem a drawback if you want to

36 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 36

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

consume XML. After all, your application will expect to see specific elements
and attributes, but if anybody has the freedom to create their own, how can you
be sure that the things you need will be there? We briefly mentioned before that
this is possible with an XML schema, a document that explains what kind of
XML markup is allowed.
Different languages exist to express schemas, the oldest being Document Type

Definition (DTD), part of the original XML specification. The DTD
specification of our Work element might look like this:

<!ELEMENT Work(CreatorRef)+>

<!ATTLIST Work title CDATA #REQUIRED>

<!ATTLIST Work year CDATA #REQUIRED>

<!ATTLIST Work collectionId IDREF #REQUIRED>

We again note a special kind of tag, which starts with an exclamation mark. The
above fragment states that Work is an element that can contain many CreatorRef
elements. It can have title and year attributes of type CDATA (character data)
and a collectionId attribute that is an IDREF (a reference to an identifier), all
of which are REQUIRED. This allows a parser to check whether the Work element
is specified in the right way. Additionally, it can verify whether the identifiers
are used correctly, as it will check for each IDREF attribute whether an element
with this ID exists.
However, DTD has a quite peculiar syntax and it does not have a strong

expressive power. For instance, we could not specify that year is a numeric value.
Also, more complicated hierarchical rules cannot be efficiently described.
Therefore, XML Schema (note the capital ‘S’) has been created by W3C (the
World Wide Web Consortium). It features an XML syntax to describe schema
documents, which themselves can also be validated by XML Schema. A
description of the Work element would be:

<xsd:element name="Work">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="CreatorRef" maxOccurs="unbounded" />

</xsd:sequence>

<xsd:attribute name="title" type="xsd:string"/>

<xsd:attribute name="year" type="xsd:gYear"/>

<xsd:attribute name="collectionId" type="xsd:IDREF"/>

</xsd:complexType>

</xsd:element>

This says that Work is an element that can have several CreatorRef elements. It

MoDeLLING 37

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 37

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

can have a title string as attribute, a year that has a year data type, and
collectionId which is an IDREF. We see that the XML Schema syntax is more
verbose, but it is also more expressive. For instance, the year field is now
specified more precisely thanks to XML Schema built-in data types.
For documents with an associated DTD or XML Schema, various automated

validators exist that either guarantee the validity of a document or show what
type of errors occur. Many software libraries for XML parsing support this
functionality. Checking the validity of an XML document upfront means the
rest of your software chain can read and manipulate the document as expected,
without causing errors because of missing or incorrect structure.

4.8 Namespaces

As anyone can make their own elements and attributes in an XML document,
we need a mechanism to universally identify which ones are the same. For
instance, two documents might use a title element, but one uses it to designate
book titles, and the other for personal titles such as Mr or Mrs. While enforcing a
specific document structure, schema documents alone do not provide a means
for consistent re-use across different types of documents that need to re-use the
same elements in another context.
This is the issue that XML namespaces address – they are a method of

qualifying element and attribute names (Bray et al., 2006). Namespaces allow
you to re-use what has already been developed by someone else, and by doing so
you can explicitly state that you agree with outside parties on how your data
should be interpreted. The link with metadata schemes is self-evident here, as
they share the same goal: making explicit statements about how a specific value
should be interpreted. For example, if I want to use an element in my XML
document which represents the name of a creator, it would make a lot of sense
not to issue an identifier on my own for that element, but to re-use the namespace
issued for the Dublin Core element “Creator”: http://purl.org/dc/terms. When
used on a creator element, it indicates that this element is to be interpreted as
defined by the Dublin Core schema, which defines it as “an entity primarily
responsible for making the resource”.
Namespaces can be indicated using the reserved XML attribute xmlns on an

element, which then holds for this element and all of its descendants.
Namespace declarations are mostly seen in the schema element, forming the root
of the schema, and are applied to the entire document. For instance, an XML
document could start with the following tag:

<Agent xmlns="http://purl.org/dc/terms/">

This indicates that all elements in the document, including the root element, are

38 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 38

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

to be interpreted according to the Dublin Core specification, which defines this
namespace. Multiple namespaces can be used in a single document by using
prefixes. For instance, we could re-use elements from a generic schema such as
Dublin Core in combination with more specific elements from VRA Core, as
follows:

<Art title="Modern art"

xmlns:dc="http://purl.org/dc/terms/"

xmlns:vra="http://vraweb.org/vracore4.htm">

<Work>

<dc:creator>Pablo Picasso</dc:creator>

<dc:title>Guernica</dc:title>

<vra:technique>Oil painting</vra:technique>

</Work>

</Art>

4.9 Search and retrieval

While relational databases are especially designed for maximal performance,
XML documents are designed for maximal flexibility. As we have seen,
information can be modelled in different ways. As such, we cannot expect XML
to achieve the same level of speed for search and retrieval, even if the entire
model is loaded into memory (which is not always possible, due to size
constraints). Nonetheless, like databases that are accessible through SQL, XML
has its own query language: XPath. Since XML is a tree, XPath allows us to
traverse that tree and collect elements and attribute values along the way. The
result of an XPath query is thus not an XML document, but a set of elements or
values.
Given the structure of XML, it does not come as a surprise that XPath has a

hierarchical division as well. For instance, the following XPath query selects all
Creator elements that are children of any Work elements in an Art document:

/Art/Work/Creator

So we first select Art, the root element (note the leading slash /), then all
possible Work children, and finally all Creator elements that are direct
descendants thereof. To select LastName elements that are children of any
Creator element, we can use:

Creator/LastName

Note how the XPath expression does not start with a slash this time, as we do
not start from the root but rather from any possible Creator element. However,

MoDeLLING 39

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 39

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

this will only select children, i.e., direct descendants, of Creator. To select all
descendants of a node, we can specify an axis called descendant:

Work/descendant::LastName

This will find all LastName elements that are somewhere inside a Work, even if
nested within other elements.
Finally, this expression selects all year attributes from Work elements:

Work/@year

Many more constructs are possible. We can filter elements based on attribute
values or the elements they contain, much as you would expect from SQL
queries. Bear in mind that XPath queries are executed by traversing the whole
XML tree, in contrast with relational databases, which use indexes of the data.

4.10 Data- versus narrative-centric XML

One of the reasons why there are so many misconceptions about XML is the
fact that it can be used for a wide range of purposes. Even if there are a lot of
concrete projects and applications which do not fall exclusively in one of the
two categories, it is important to distinguish the data- and narrative-centric
approach to XML. These two categories largely coincide with how the two
different communities we talked about in the beginning of the section
understand XML. The IT community has a data-centric view, in the sense that
XML is used to define a structure, which is then filled up with data. The example
of a Simple Object Access Protocol (SOAP) message below illustrates this
approach. The XML file allows to facilitate, in an automated manner, the
communication of a specific value between two computers, here the insurance
value of Guernica at the Reina Sofia Museum, in a structured format.

<?xml version="1.0"?>

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope">

<soap:Header/>

<soap:Body>

<m:GetInsuranceValue xmlns:

m="http://www.example.org/insurance_value">

<m:Insurance_value>DE00050</m:Insurance_value>

</m:GetInsuranceValue>

</soap:Body>

</soap:Envelope>

40 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 40

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

The digital humanities and computational linguists tend to have a narrative-
centric vision of XML, in the sense that XML is used to insert some level of
structure in documents. The Text Encoding Initiative (TEI) is a classic example
of the narrative-centric approach. Below you can find an excerpt from a TEI
example file from Wikipedia. The choice tag can be used to represent variants
of the same section of text. In the example below, choice is used to indicate an
original and a corrected value and to differentiate an original and regularized
spelling:

<p xml:id="p23">

Lastly, That, upon his solemn oath

to observe all the above articles,

the said man-mountain shall have a daily allowance of

meat and drink sufficient for the support of

<choice>

<sic>1724</sic>

<corr>1728</corr>

</choice> of our subjects,

with free access to our royal person, and other marks of our

<choice>

<orig>favour</orig>

<reg>favor</reg>

</choice>.

</p>

The fact that XML can accommodate both approaches is due to the fact that
XML was conceived to be both human- and machine-readable. This feature of
XML is one of both its biggest advantages and its biggest pain points. Any XML
file can be opened and modified in a text editor. In theory, you could describe
your entire collection in all of its detail by just using Notepad. This platform and
application independence makes it particularly easy to exchange XML
documents between heterogeneous environments. XML files are in this sense
one of the best serialization formats that make the case for non-binary files.

4.11 Change

Most changes in XML are difficult and should be carefully considered, as they
need to propagate to different documents. In the case of relational databases,
changing the structure was cumbersome, but nonetheless always limited to a
single system. With XML, if a document format evolves, there are two main
options:

MoDeLLING 41

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 41

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

• The change is completely backwards-compatible; for example, adding an
optional element. Existing documents can then remain as-is, and parsers can
be extended. However, this needs careful planning in advance, and is not
always possible.

• The change is not backwards-compatible; for example, renaming a tag or
changing an attribute into a child element. We distinguish two sub-
options:
— Through schema versioning, different document structures can be

supported. Existing documents do not have to change, but parsers
must support the different versions (for example, one with the old
element name and one with the new name).

— The change is breaking and existing documents and parsers have to
be updated to conform to the new schema. This leads to maximal
consistency, but many modifications must be carried out (for
example, all documents and parsers have to switch to the new
name).

The first option is clearly optimal, but only applies to certain cases. In general,
change is difficult and thus progresses slowly. Between changes, data cannot be
stored optimally.

4.12 Why do IT people prefer JSoN?

According to the followers of the XML hype around the year 2000, XML was soon
going to take over the web (and then the world). There are several reasons why
this did not happen – even though XML is still very popular in many application
domains. First, there is XML’s verbosity. By design, XML tries to be as explicit as
possible, but this sacrifices clarity in the end. For many XML documents, it is
difficult to understand what it going on with a single look. There is also a lot of
repetition in the markup.
More importantly, the web has witnessed an enormous growth of JavaScript

applications. At first regarded as inferior to compiled languages such as Java (which
has many XML-driven parts itself), it soon became clear that JavaScript’s dynamic
nature made it a perfect fit for the web. While JavaScript can parse XML, it also
has a native format to express data: the JavaScript Object Notation or JSON, with
a more terse syntax that focuses on ‘just getting things done’. As a result, we should
not expect much portability between different contexts. However, data exchange
over the web between clients and servers, and between different applications,
happens mostly in JSON. Severance (2012) neatly describes this oddity of the
winning underdog. An example JSON fragment of a work could look like this:

42 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 42

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

{

"title": "Guernica",

"year": 1937,

"creator": {

"firstName": "Pablo",

"lastName:" "Picasso"

},

"collection": {

"name": "Museo Reina Sofia",

"location": "Madrid"

}

}

Note that JSON has also a hierarchical structure; in fact, the above document
translates directly into XML (with the exception that JSON does not offer
distinct structures for child element and simple attributes).

4.13 Does XML make your data smart?

In the introduction of this section we mentioned the high expectations collection
holders have of XML, due to the common belief that XML makes your data
smart. We hope to have demonstrated throughout the section that XML is
nothing more, but also nothing less, than a standardized syntax to encode data
in a structured manner. The semantics of data can be made explicit through the
use of XML elements, but it is important to realize that outside the community
which defined the elements, the meaning of the elements is not explicit. The
use of namespaces does offer the opportunity to share amongst different
communities the same element, but this practice mostly applies to a limited set
of the elements. So at the end of the day, even with our metadata in a more
portable format we are still confronted with the same problem: if we want other
people to re-use our metadata, they are forced to study the schema and
documentation describing their semantics.

5 Linked data

We have travelled all the way from previous data models to come to this specific
point. Relational databases and XML both offer wonderful possibilities to manage
structured metadata, but they also have the big drawback that you need to
understand the schema describing the structure and interaction between the
data. This is exactly where our last data model comes in.

MoDeLLING 43

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 43

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

5.1 The semantic web vision

Before we get into details regarding the data model, let us first fully understand
why exactly we need to bypass the problems associated to the re-use of locally
defined semantics. The vision behind the semantic web was born out of the
frustration of having only human-readable information on the web, which restricts
the ways in which software can help us find information. For instance, keyword-
based search works well for terms such as ‘Picasso’. Queries such as ‘paintings by
Picasso’ are already more difficult, since pages can use different wording. But
without an interpretation of a page’s content, queries such as ‘paintings by artists
who have met Picasso’ are impossible. In the semantic web vision, the web also
becomes accessible for software agents instead of containing only human-readable
information (Berners-Lee, Hendler and Lassila, 2001). It enables a vast array of
novel applications by making information machine-interpretable.

5.2 RDf

By adopting an extremely simple data model consisting of triples, data
represented in Resource Description Framework (RDF) become schema-neutral.
An RDF triple consists of a subject, predicate and an object, as seen in Figure 2.1.
This allows for maximum flexibility. Any resource in the world (the subject) can
have a specific relationship (the predicate) to any resource in the world (the
object). There is no limit on what can be connected to what. This model allows
us to express statements in a straightforward way, such as for example the
statement that Jeff Koons is the artist who created the work ‘Puppy’:

:Jeff_Koons :created :Puppy.

Figure 2.4 represents some of the metadata of the example we have been using
throughout this chapter. By simplifying to a maximum the data model, all of the
semantics are made explicit by the triple itself. By doing so, there is no longer a
need for a schema to interpret the data. Within the world of databases and XML,
only the data conforming to the rules defined in the schema may exist and be
encoded in the database or XML file. With RDF, you just make statements about
facts you know, but these statements might interact with statements made
outside your information system. This data model allows heterogeneous data to
connect and interact. For instance, in Figure 2.4 you can see two pieces of
metadata which were previously not mentioned.
Note, however, that schema-neutral does not mean that no schema-related

issues remain. Any piece of data still needs to be expressed in a certain
vocabulary, and each vocabulary has its own way of expressing things. The main
difference between RDF and XML and other technologies is that in RDF
everything is self-describing: each vocabulary is expressed in terms of other

44 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 44

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

vocabularies. In order to extract meaning from a given RDF fragment, the unique
identifiers of each used resource allow its definition to be looked up. This look-
up mechanism is enabled by the principles of linked data, which is the topic of
the next section.

5.3 The linked data principles

The implementation of the RDF model in the open and distributed context of
the web is based upon their capability to issue identifiers for subjects, predicates
and objects, which can be freely re-used. Software is then able to interpret this
information, because the identifiers create unique meaning, as opposed to the
names of columns in databases or elements in XML, which only have local
significance and change from application to application.
However, the semantic web was mainly developed from the artificial

intelligence (AI) standpoint. Ever since the 1960s, the AI community worked
on automated reasoning, expert systems and intelligent agents. Underlying all of
these fields and applications is a core belief in the power of logic to formalize all
aspects contained within an information system. Chapter 4, in section 4, will
come back to the reasons why this vision is currently deemed unworkable on
the scale of the web.
In order to move forward with a machine-readable web, Berners-Lee (2006)

drastically reduced the ambitions of the full-blown semantic web and came up
with the linked data principles. These four rules specify a simple way to format
data so it can be interpreted by software:

1 Use URIs as names for things.
2 Use HTTP URIs so that people can look up those names.
3 When someone looks up a URI, provide useful information, using the

MoDeLLING 45

bilbao

Dog

Puppy

Jeff koons

Picasso

Guggenheim

influenced

created

depicts

resides
location

Figure 2.4 Illustration of how to use triples to express metadata

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 45

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

standards (RDF, SPARQL).
4 Include links to other URIs so that they can discover more things.

As you can see, these principles require a clear understanding of URLs and URIs.
A URL is a uniform resource locator, which, as the name says, enables to locate
resources in a unique way. The most widely known URLs are those used on the
web; they start with http: or https:. Given any such URL, your browser is able to
locate the underlying resource, no matter where it is physically stored. A URI,
uniform resource identifier, is a generalization of the concept that permits
resources anywhere in the universe to be given a unique identification. However,
not all URIs are URLs; for instance, the URI urn:lex:eu:council:
directive:2004-12-07;31 uniquely identifies a European Union directive, but
does not directly give its location.
Let’s now look at the role of URIs and URLs in the linked data principles. The

first principle demands unique identification for each concept, and URIs are the
most appropriate mechanism to provide this. Additionally, the second principle
states that these identifiers must be HTTP URIs, in other words URLs on the
web. The third principle asks for the representation of the resources identified
by those URLs by using standards, such as the machine-readable format RDF.
Finally, the fourth principle makes sure that data contains links to other data,
allowing software agents to look up related information.

5.4 The central role of uRLs

Remember how XML namespaces uniquely identified elements and attributes.
With linked data, URLs are used to uniquely identify concepts. For example, a
more meaningful way to express the fact that Jeff Koons created ‘Puppy’ is the
following triple:

<http://guggenheim.org/new-york/collections/collection-

online/artwork/48>

<http://purl.org/dc/terms/creator>

<http://viaf.org/viaf/5035739>.

In this example you see that the artist Jeff Koons is identified with the URL of
his authority file available on the Virtual International Authority File (VIAF)
website. What is the added value of using the URL instead of the string of
characters ‘Koons, Jeff, 1955–’? Rules have been developed for decades to
formalize the spelling of names in authority records, and in order to disambiguate
with other people with exactly the same name, his date of birth has been added.
Therefore, one could think that the text string serves well as an identifier.
Imagine, however, what needs to happen if Jeff Koons dies in 2025? All of the

46 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 46

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

metadata which used the text string to designate the name of the creator will
need to update the creator field to ‘Koons, Jeff, 1955–2025’. Instead, if the VIAF
URL is used, the information only needs to be updated centrally in the VIAF
authority file, but the URL as such does not change. From the moment the date
of death has been added, this new information will become automatically
available to everyone who uses the VIAF URL as an identifier for Jeff Koons.
The fact of looking up more information about a subject through its URL is called
dereferencing. Chapter 5 will explain the use of URLs for both virtual and real-
world resources.
The basic condition for this approach is a stability of the identifier, and

URLs tend to have a very bad reputation on that level. The URL used to
identify the work ‘Puppy’ is simply the URL of the record displaying the
metadata of the object. But what would happen if this work is transferred
from the Bilbao to the Venice Guggenheim museum? This would imply that
the URL loses its validity. To avoid such trouble, Chapter 6 discusses sus -
tainable URLs.

5.5 Serialization

As the initial semantic web vision was launched in 2001, it comes as no surprise
that the first standardized syntax was based on XML, and consequently named
RDF/XML. Unfortunately, RDF/XML inherits the verbosity of XML as well,
resulting in a serialization format that admittedly can be parsed by an XML
parser, but is hard to follow and understand. Therefore, the Turtle syntax was
developed, in which triples are native elements. Turtle is currently in the final
stage of standardization, and is bound to take the place of RDF/XML.
The triples above were expressed in Turtle, but here we will review its syntax

in more detail. In Turtle, triples are serialized by separating each of the com -
ponents (subject, predicate, object) by white space and ending it with a dot.
URLs are surrounded by angle brackets.
Since URLs can be rather long, it includes an abbreviation mechanism through

the @prefix directive:

@prefix gh: <http://guggenheim.org/new-york/collections/collection-

online/artwork/>.

@prefix dc: <http://purl.org/dc/terms/>.

@prefix viaf: <http://viaf.org/viaf/>.

gh:48 dc:creator viaf:5035739.

We first define three prefixes, consisting of certain characters ended by a colon,
which can subsequently be re-used. This makes the actual triples shorter and

MoDeLLING 47

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 47

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

easier to understand, and can also eliminate possible mistakes in the URL by
avoiding duplication.
Multiple statements about the same object can be written tersely by using a

semicolon if the subject is repeated, and a comma if the subject and predicate
are repeated:

gh:48 dc:creator viaf:5035739;

dc:title "Puppy".

viaf:5035739 :influencedBy viaf:15873,

viaf:95794725.

The above fragment states that the creator of the artwork is Jeff Koons
(viaf:5035739) that its title is ‘Puppy’, and that Jeff Koons is influenced by Pablo
Picasso (viaf:15873) and Ed Paschke (viaf:95794725). In addition to the use of
semicolons and commas, we note two other things. First, the word ‘Puppy’ is
surrounded by double quotes, as it is not a URL but a literal value. RDF includes
literal values in its model as well, as some properties eventually do not point at
another object but rather at a non-decomposable value. Literal values can have
an associated type (such as string, number, or date), and in case of a string, a
language code (such as en-us). Second, the predicate :influencedBy has an
empty namespace prefix, which indicates that it is local to the current document.
This is a convenient way of introducing new concepts in a document, which are
then defined in terms of other properties later on.

5.6 Search and retrieval

Like relational databases and XML before, RDF also comes with its own query
language, SPARQL. Queries in SPARQL are based on graph patterns: the form
of the desired data is described in a WHERE clause. A simple SPARQL query is
the following one:

SELECT ?predicate ?object WHERE {

<http://dbpedia.org/resource/Pablo_Picasso> ?predicate ?object.

}

This searches for triples that have Picasso as subject and any predicate and any
object. The question mark before a word means that it is a variable. Out of those
triples, the query will return the predicate and the object.
We can be more specific as well. For instance, if we want to find works by

Picasso, we can use the following query. Note the use of prefixes to abbreviate
common terms.

48 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 48

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

PREFIX dbpedia: <http://dbpedia.org/resource/>

PREFIX dbpprop: <http://dbpedia.org/property/>

SELECT ?work WHERE {

?work dbpprop:artist dbpedia:Pablo_Picasso.

}

This illustrates the simplicity of the linked data model, while at the same time
showing its immense power and flexibility.

5.7 Change

We hope you understand an essential feature of the RDF data model by now:
that all of the semantics of the data are made explicit through the model itself.
In a sense, we have come full circle with a return to the idea of a flat file, if we
think of a collection of triples contained in a single file, composed of three
columns with the headers subject, predicate and object. Confronted with a new
reality which needs to be handled, new triples are simply added. However, this
comparison does not do justice to the RDF model, as the strength of triples is
that every value points to other triples that have this value as subject or object.
The context of every row is thereby augmented by other rows.
Change in RDF is therefore supported easily: adding new data comes down

to adding new triples, without needing to alter the existing data or structure.
This gives the data maximum flexibility, at the cost of dealing with an open
world. Whereas databases are guaranteed to give you all the data they have,
finding all facts about a concept is more complicated with RDF, as different
identifiers might be used for the same thing. Nonetheless, when such issues are
managed properly, for instance by creating sufficient links between datasets,
schema-neutrality can be a very powerful concept.

6 Conclusion

This chapter provided an answer to the question of why we need linked data.
The answer might seem self-evident and straightforward: in order to link data
across the web. To achieve this goal, we need to be able to interconnect data
across independent islands. We use the word ‘islands’, as each information system
is modelled for its particular needs and application domain, resulting in systems
that cannot hold hands with one another in an automated manner. For sure, it is
easy to embed a link in your collection database which points to the record of a
similar object from another institution. But this requires you to know how to
access the database of the other institution, to know what fields are used to
describe the object. Once you have found the record to which you want to link,

MoDeLLING 49

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 49

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

you need to embed its URL manually within the record of your database. We
cannot reasonably perform these actions manually for all of our collection items.
We therefore need to think about how we can automate the linking process.

6.1 understanding trade-offs

In order to understand the obstacles to the automation of linking, this chapter
gave a comprehensive overview of the most recurrent data models used to build
the current islands of metadata. Hopefully the red thread between the four data
models has appeared clearly. A trade-off has to be made between the complexity
of the data model and the ease with which the outside world can re-use and
connect to your data. The collection management databases which are currently
forming the backbone of our cultural heritage institutions allow complex data
to be stored in a way which minimizes redundancy and dependency. You only
need to encode once all the information you have in relation to an artist or some
very rare and complex technique which requires a lot of documentation to be
understood. The day the artist dies, you only need to update the attribute ‘Date
of death’ of the entity ‘Artist’, and this update will be shared across all the
records pointing to this entity.
However, we have seen that this advantage comes at a cost. A collection

management database can easily contain several hundreds of tables, inter -
connected with relations. Modifications and extra tables are often added in an
ad hoc manner in order to fulfil an urgent need, and are often left un -
documented. It should therefore come as no surprise that migration operations
from one software to the other (or even just to another version of the same
software) can be very time-consuming for IT staff, as they need to interpret the
database schema to understand how the tables are interconnected.
The development of XML made it easier to share metadata across applications,

due to its platform and application independence. In contrast to databases, you
do not need any specific software to read and create XML documents. The
advantage of being readable both for humans and machines also resulted in XML’s
major drawback, namely its verbosity. More importantly, complex data described
in XML rely on a schema documenting and prescribing how elements and
attributes interact within an XML file. Establishing a consensus inside and outside
an institution on how to interpret and update the schema often causes problems.
The last section of this chapter introduced RDF, which we referred to as

schema-neutral. The simplicity of the data model (subject-predicate-object)
brings back the idea of a flat file, consisting of three columns representing
subjects, objects and predicates. No extra documentation or schema is needed
to interpret these data, and any new type of information can be added without
a need to modify the structure of the data model.

50 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 50

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

6.2 The law of instruments

‘Give a small boy a hammer, and he will find that everything he encounters needs
pounding’.2 This expression, also referred to as the ‘law of the instrument’,
describes how people have a tendency to attribute too much importance to the
tool they are using, at the expense of their objectives. One would think that
engineers evaluate what data model most suits the needs of an application, and
then choose a technology allowing them to implement the model. In practice,
the opposite often happens. People build up experience with a specific
technology and are not very eager to switch to another tool, as this sometimes
requires a substantial effort. Academics and consultants, on the other hand,
occasionally tend to get overly enthusiastic about a new technology, regardless
of whether the underlying data model is best for the purpose at hand.

6.3 When to use what

This chapter hopefully made it clear that every model has been developed for a
specific use. If the only tool you have is a hammer, you treat everything as if it
were a nail. This was the case with the use of XML in the context of SOAP, for
example. The verbosity of XML is now considered inadequate for data exchange
over the web between clients and servers, and its role is taken over by JSON.
The current hype on linked data reminds us of the unbounded enthusiasm for
XML, in the sense that a lot of applications which are currently built based on
linked data technologies could be better and more cheaply realized with a classic
relational database. At the end of this chapter, the reader hopefully has acquired
a sufficient historical, conceptual and technical understanding of which data

MoDeLLING 51

Table 2.3 Summary of the (dis)advantages of different data models
data model (dis-)advantages use
tabular data + intuitive approach

+ very portable
+ technology agnostic
– prone to redundancy and leading to

inconsistencies
– inefficient search and retrieval

import and export of data
with a simple structure

relational model + handling of complex data
+ optimized queries
+ mature software market
– binary format
– schema-dependent

management of complex
data which require
normalization

meta-markup + platform-independent
+ both human- and machine-readable
– complicated implementation for

complex data
– verbosity

import and export of
complex data

RDF + schema-neutral approach
+ discovery of new knowledge
– loss of normalization
– immature software market

making data available for
linking

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 51

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

model to use in which context.
To conclude this chapter, Table 2.3 summarizes the essential characteristics of

every data model we discussed.
The case study at the end of this chapter will now demonstrate how the linked

data approach results in a dynamic view of data, allowing heterogeneous
information sources to interconnect in a standardized manner. Through the
example queries, issues regarding data inconsistency and incompleteness, which
is the drawback of this open world approach, will also be underlined. While
practising with concrete examples with SPARQL queries, try to reflect
specifically on one of the characteristics of the RDF data model that we
identified: it is schema-neutral from a conceptual point of view. However, what
happens in practice when you want to query a dataset you are not familiar with
in SPARQL? We will come back to this issue in the concluding chapter.

7 CASE STUDY: linked data at your fingertips

This case study is slightly different from the others in this book, in that it
doesn’t focus on a particular dataset. Instead, we will explore linked data from
various sources to get a feeling of the possibilities and limitations in practice.
earlier on in this chapter, we referred to the schema-neutral character of the
conceptual RDf data model. The exercises of this case study will help you
understand how this theoretical model has been implemented in practice. As
you will see, the open-world assumption definitively offers opportunities but
can be challenging to implement. To demonstrate this, we will retrieve in this
case study metadata on Pablo Picasso in various ways, to understand the
capabilities of each data source. first, we will examine Dbpedia, which is a
version of Wikipedia automatically converted into RDf. Next, we will try
queries on freebase, which is a collaborative linked data source with partly
automated input (from Wikipedia and other sources) and partly human input.
The difference between Dbpedia and freebase is that freebase can be edited
publicly, whereas Dbpedia only has a single automated process. finally, we will
zoom in on Sindice, an index that brings together many large datasets of the
linked data cloud and is easily accessible through its front-end Sig.ma.

7.1 Dbpedia, the Wikipedia of data

Dbpedia is a publicly accessible RDf store with content that is automatically
extracted from Wikipedia, the free online encyclopedia. A substantial proportion
of articles on Wikipedia have semi-structured data in the form of infoboxes
(usually displayed to the right of an article) listing key/value data such as names,
birth dates, etc., which are available on Dbpedia. Two versions of Dbpedia are
available: a periodically updated version at http://dbpedia.org/ and a live version

52 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 52

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

at http://live.dbpedia.org/, which follows the rapid change on Wikipedia. Dbpedia
currently contains more than 250 million triples. In this case study, we will look
at Dbpedia and investigate how we can browse and query data.

7.1.1 Browsing DBpedia

finding a topic page is as easy as going to http://dbpedia.org/ page/Topic_Name.
for instance, the Dbpedia page of Pablo Picasso can be found at http://
dbpedia.org/page/Pablo_Picasso. At the top of this page, we see its title Pablo
Picasso, followed by a short english description. The remainder of the page
consists of a long two-column table with properties and values that contain the
infor mation we are interested in. Take your time to look around and discover
what Dbpedia has to say about Picasso. In addition to human-readable abstracts
in many different languages, we see many key-value pairs that contain machine-
interpretable information. using the Dbpedia ontology, knowledge about
Picasso is expressed, such as birth date and place, multi-language labels,
influences, spouse, and nationality.

If you wonder where the triples are, well, you can reconstruct them by taking
the page’s subject, a predicate from the Property column and an object from
the Value column. for instance, one of the triples is:

dbpedia:Pablo_Picasso dbpedia-owl:birthPlace dbpedia:Málaga.

There are also several properties in the reverse direction as well, indicated by
the key ‘is property of’. for instance ‘is dbpedia-owl:parent of’ translates to:

dbpedia:Paloma_Picasso dbpedia-owl:parent dbpedia:Pablo_Picasso.

As we expect from linked data, we can click through on any value to learn more.
If we click on dbpedia:Málaga, we see a page with detailed information on the
city. As we explained earlier, even the properties can be examined. Clicking
dbpedia-owl:birthPlace reveals that this is a relation between a person and a
place. Interestingly, some links go outside Dbpedia, thus connecting this dataset
to others, something that is not possible with relational databases. for instance,
http://data.nytimes.com/ N855344257183137093 is indicated as the same
resource, with the owl:sameAs relation, and this link leads to Picasso’s data sheet
on the New York Times website. This reveals the true potential of linked data.

At the bottom of the page, there are links to view the data in different
formats. The ‘N3/Turtle’ link leads to an RDf serialization that can be interpreted
by software. you might notice a lot of strange-looking sequences in the file
which take up a large amount of space. They are escape sequences for non-ASCII
characters, such as å, ä, or ö for example, from the full-text abstraction fields.

MoDeLLING 53

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 53

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

however, towards the bottom of the file, you will notice more familiar triples
such as:

dbpedia:Noel_Rockmore dbpedia-owl:influencedBy

dbpedia:Pablo_Picasso.

dbpedia:Ben_Shahn dbpedia-owl:influencedBydbpedia:Pablo_Picasso.

dbpedia:Piet_Mondrian dbpedia-owl:influencedBy

dbpedia:Pablo_Picasso.

If possible, we recommend that you switch off line wrapping in your editor, so
the long lines with escape sequences will simply flow off the screen.

7.1.2 Querying DBpedia

once we get to know some basic properties of the data, we have sufficient
information to start querying it in a more complex way. We have seen some
pre dicates and some objects, which can help us construct queries. We advise
you to keep the Picasso page open in one tab while you bring up the SPARQL
query interface at http://dbpedia.org/sparql. you are greeted by the following
default query:

SELECT DISTINCT ?Concept WHERE { [] a ?Concept. } LIMIT 100

We are already familiar with the WHERE and SELECT clauses, and as their names
suggest, DISTINCT asks for unique items and LIMIT 100 for only the first 100
results. The [] syntax is a way to say ‘any node’, like a variable without a name.
If we execute this query, we will receive a (quite random) list of 100 Concepts
in Dbpedia. These are not only Dbpedia topics, but also concepts such as
owl:Thing and http://schema.org/CreativeWork.

Let’s now try a query of our own, to verify if we can get the same
information on Picasso as we did when browsing Dbpedia. To see all triples on
Picasso, enter the following SPARQL query:3

PREFIX dbpedia: <http://dbpedia.org/resource/>

PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>

SELECT ?p ?o WHERE { dbpedia:Pablo_Picasso ?p ?o. }

This will show us all triples we saw earlier on the Picasso page. Well, at least
those triples that have Picasso in the subject. To find all triples where Picasso
is the object, issue the query:

54 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 54

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

SELECT ?s ?p WHERE { ?s ?p dbpedia:Pablo_Picasso. }

This yields results like the following:

The values in the s column correspond to bindings of the ?s variable, the p
column to bindings of the ?p variable. To understand where the found
information comes from, we substitute s and p in the original WHERE clause.
The first row thus belongs to a match of:

dbpedia:The_Three_Dancers dbpedia-owl:artist dbpedia:Pablo_Picasso.

To receive just 30 triples, add the LIMIT clause:

SELECT ?p ?o WHERE { dbpedia:Pablo_Picasso ?p ?o. } LIMIT 30

If you want to see all predicates used with Picasso as the subject:

SELECT ?p WHERE { dbpedia:Pablo_Picasso ?p ?o. }

Note the omission of the ?o variable in the SELECT clause, as we only want to
see the predicates. This yields the following list:

MoDeLLING 55

s p
dbpedia:The_Three_Dancers
dbpedia:The_Accordionist
dbpedia:Desire_Caught_by_the_Tail
dbpedia:Olga_Khokhlova
dbpedia:Stanley_William_Hayter
…

dbpedia-owl:artist
dbpedia-owl:artist
dbpedia-owl:author
dbpedia-owl:spouse
dbpedia-owl:influenced
…

p
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
…
http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/2002/07/owl#sameAs
…
http://purl.org/dc/terms/subject
http://purl.org/dc/terms/subject
http://purl.org/dc/terms/subject
…

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 55

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

you might be surprised to see that there are duplicates in the result list. how
come we have duplicates here when we did not have them in the previous
query? The answer is that triples are unique in the triple store, i.e., a triple
can only occur once.4 however, many triples can use the same predicates, and
indeed, several Picasso triples use the rdf:type and owl:sameAs predicates.
To have the unique predicates, we need to add the DISTINCT modifier:

SELECT DISTINCT ?p WHERE { dbpedia:Pablo_Picasso ?p ?o. }

So far, we have received tables of variable values as a result, but what if we
want triples? besides SELECT, SPARQL also has a CONSTRUCT clause that creates
triples instead of variable bindings. for example, this shows all Picasso triples:

CONSTRUCT { dbpedia:Pablo_Picasso ?p ?o. }

WHERE { dbpedia:Pablo_Picasso ?p ?o. }

These include the following:

dbpedia:Pablo_Picasso rdf:typefoaf:Person,

yago:SpanishPotters,

yago:PeopleFromParis,

yago:BalletDesigners.

dbpedia:Pablo_Picasso dcterms:subject category:Cubism

category:Spanish_expatriates_in_France,

category:Spanish_sculptors,

category:Modern_painters.

It might seem strange to duplicate the graph from the WHERE clause into the
CONSTRUCT clause, but they actually signify two different things. The WHERE
clause tells the SPARQL engine to look for all triples that have Picasso as the
subject and to store their predicates and objects in the variables ?p and ?o
respectively. The CONSTRUCT clause instructs the engine to collect all ?p and ?o
values – regardless of how they were retrieved – and to create triples from
them using the specified pattern.

This means that we can choose to generate a different pattern. for instance,
suppose that we just want to express that Picasso is somehow connected to
the object of the triple, instead of exactly specifying this relationship. Then we
can simply do:

CONSTRUCT { dbpedia:Pablo_Picasso <isConnectedTo> ?o. }

WHERE { dbpedia:Pablo_Picasso ?p ?o. }

56 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 56

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

This will yield triples such as:

dbpedia:Pablo_Picasso <isConnectedTo> category:Modern_painters.

This allows you to convert the queried data into the form that you prefer.
finally, to receive 100 random triples from Dbpedia, try the following:

CONSTRUCT { ?s ?p ?o. } WHERE { ?s ?p ?o. } LIMIT 100

7.2 More complex SPARQL queries

WHERE patterns can be as complex as you like. The most simple case is a single
triple. for instance, the birth place of Picasso can be retrieved by:

SELECT ?place WHERE {

dbpedia:Pablo_Picasso dbpedia-owl:birthPlace ?place.

}

This turns out to be http://dbpedia.org/resource/M%C3%A1laga. Note the use
of escape sequences in the uRL to encode the accented character in ‘Málaga’.
We can now find all people born in Málaga:

SELECT ?person WHERE {

?person dbpedia-owl:birthPlace

<http://dbpedia.org/resource/M%C3%A1laga>.

}

unsurprisingly, this list includes Picasso himself:

We could simplify the same question by describing the pattern in one query
with a WHERE clause consisting of two triples:

SELECT ?person WHERE {

dbpedia:Pablo_Picasso dbpedia-owl:birthPlace ?place.

?person dbpedia-owl:birthPlace ?place.

}

MoDeLLING 57

person
…
dbpedia:Pepe_Romero
dbpedia:Pablo_Picasso
dbpedia:Edu_Ramos
dbpedia:Carlos_Aranda
…

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 57

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

This will select all people whose birthplace is the same as Picasso’s, without
having to specify that exact place. We just instruct the SPARQL engine to find
the birthplace for Picasso and look for people with this birthplace at the same
time. Were you surprised to see Picasso in the result list? It might seem strange,
but this is actually logical: Picasso has the same birthplace as Picasso, hence he
is included in the list. Always remember that computers execute what you ask
for, not what you intended to ask: Picasso satisfies the query pattern, so his
name is returned, even though you already knew this.

We could place further restrictions on this list. for instance, we see many
different kinds of people. If we are only interested in artists born in Málaga,
we can say:

SELECT ?person WHERE {

dbpedia:Pablo_Picasso dbpedia-owl:birthPlace ?place.

?person dbpedia-owl:birthPlace ?place.

?person a dbpedia-owl:Artist.

}

The list has fewer members, and Picasso is still in there (since he’s an artist):

Let’s ask for people who were influenced by Picasso:

SELECT ?artist WHERE {

?artist dbpedia-owl:influencedBy dbpedia:Pablo_Picasso.

?artist a dbpedia-owl:Artist.

}

And let’s see where those people were born, to have an idea of how Picasso’s
legacy spread geographically:

SELECT ?artist, ?place WHERE {

?artist dbpedia-owl:influencedBy dbpedia:Pablo_Picasso.

?artist a dbpedia-owl:Artist.

?artist dbpedia-owl:birthPlace ?place.

}

58 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

person

…

dbpedia:Javier_Conde

dbpedia:Pepe_Romero

dbpedia:Pablo_Picasso

dbpedia:Juan_Antonio_Arguelles_Rius

…

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 58

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

This reveals the following data:

Note how some artists occur twice in the list, but with a different place. for
instance, karel Appel has a birthPlace of Amsterdam but also The
Netherlands, both of which are correct. It might be confusing that they appear
twice, but this is because the values are coming from different triples and both
answers conform to the query pattern we gave. When we ask for the data as
triples, this connection becomes more obvious.

CONSTRUCT { ?artist dbpedia-owl:birthPlace ?place. }

WHERE {

?artist dbpedia-owl:influencedBy dbpedia:Pablo_Picasso.

?artist a dbpedia-owl:Artist.

?artist dbpedia-owl:birthPlace ?place.

}

Triples indeed better illustrate the connection between the pieces of data:

dbpedia:Dick_Bruna dbpedia-owl:birthPlace dbpedia:Utrecht,

dbpedia:Netherlands.

dbpedia:Wifredo_Lam dbpedia-owl:birthPlace dbpedia:Sagua_La_Grande,

dbpedia:Cuba.

dbpedia:Karel_Appel dbpedia-owl:birthPlace dbpedia:Netherlands,

dbpedia:Amsterdam.

Another perspective is time: when were the people who were influenced by
Picasso born?

SELECT ?artist, ?date WHERE {

?artist dbpedia-owl:influencedBy dbpedia:Pablo_Picasso.

?artist a dbpedia-owl:Artist.

?artist dbpedia-owl:birthDate ?date.

}

This gives the following people:

MoDeLLING 59

artist place
dbpedia:Sarah_Stein

dbpedia:Helmut_Kolle

dbpedia:Karel_Appel

dbpedia:Karel_Appel

…

dbpedia:San_Francisco

dbpedia:Charlottenburg

dbpedia:Amsterdam

dbpedia:Netherlands

…

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 59

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

We have a considerably shorter list then when we asked for all people
influenced by Picasso. This appears strange, because the amount of people
should be the same, no matter when they were born. The issue here is that
Dbpedia does not contain birth data information for all people. As a result,
only people with a birth date are included. In contrast, a relational database
would include all people but leave unknown birth dates empty. We can obtain
the same behaviour from Dbpedia by marking the triple with the birth date
OPTIONAL:

SELECT ?artist, ?date WHERE {

?artist dbpedia-owl:influencedBy dbpedia:Pablo_Picasso.

?artist a dbpedia-owl:Artist.

OPTIONAL {

?artist dbpedia-owl:birthDate ?date.

}

}

This will give us all influenced people, some of which have an unknown birth
date:

To obtain a chronological overview, we can ask Dbpedia to ORDER the results:

SELECT ?artist, ?date WHERE {

?artist dbpedia-owl:influencedBy dbpedia:Pablo_Picasso.

?artist a dbpedia-owl:Artist.

OPTIONAL {

?artist dbpedia-owl:birthDate ?date.

}

}

ORDER BY ?date

60 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

artist date
dbpedia:Wifredo_Lam
dbpedia:Karel_Appel
dbpedia:Piet_Mondrian
…

1902-12-08
1921-04-25
1872-03-07
…

artist date
dbpedia:Wifredo_Lam
dbpedia:Karel_Appel
dbpedia:Dick_Bruna
dbpedia:Piet_Mondrian
dbpedia:Joan_Glass
…

1902-12-08
1921-04-25

1872-03-07

…

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 60

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

This will list artists without a known birth date first, followed by an ordered
list of those with a known birth date.

finally, we might be interested to dig even deeper. All artists in the current
list were influenced by Picasso, but who did those artists influence?

SELECT ?artist, ?influencedArtist WHERE {

?artist dbpedia-owl:influencedBy dbpedia:Pablo_Picasso.

?influencedArtist dbpedia-owl:influencedBy ?artist.

}

The SPARQL engine first looks for all ?artist matches who were influenced
by Picasso. for each ?artist value, it looks for ?influencedArtist matches
who were influenced by ?artist:

Now is the time to reflect on what we have achieved. The above query selects
people influenced by people who were influenced by Picasso. We sincerely
challenge you to try finding this information on Google (do let us know how
many searches and clicks you needed).

one important remark though: the returned information by Dbpedia is
incomplete and likely incorrect. There are two reasons for incompletion. first,
not all data might be there. Some artists might not be in Dbpedia, others
might not have their influences listed. If Dbpedia does not know an artist’s
influences, that result will simply not be included. Second, SPARQL endpoints
are not obliged to return all results. RDf has an open-world assumption: just
as on the web, we are never sure that all information is there. hence, the
SPARQL engine gives its best effort to find your query results, but without
the guarantee that they will be complete. you can try to formulate a query
that gives you all the data from Dbpedia (it’s really easy in fact), but you will
notice that you only get a few thousand results. It is not that the other triples
are not there; it is just that the SPARQL engine decided it has worked hard
enough already. The reason for incorrectness, apart from missing
information, is that the information in Dbpedia stems from the online
encyclopedia Wikipedia, which is edited by volunteers. That information
might contain errors, or might be outdated. The SPARQL endpoint of

MoDeLLING 61

artist influencedArtist
dbpedia:Karel_Appel

dbpedia:Piet_Mondrian

dbpedia:Piet_Mondrian

dbpedia:Georges_Braque

dbpedia:Georges_Braque

…

dbpedia:Jan-Hein_Arens

dbpedia:Charmion_Von_Wiegand

dbpedia:Robert_Cottingham

dbpedia:Piet_Mondrian

dbpedia:Byron_Galvez

…

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 61

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

Dbpedia Live (http:// live. dbpedia.org/ sparql) might give you more up-to-date
results, but unfortunately, no correctness guarantee either. however, results
from a search engine such as Google can also be incomplete and incorrect.

7.3 freebase, the community-curated database

7.3.1 Browsing Freebase
While Dbpedia data stems from Wikipedia, an encyclopedia that can be edited
by anyone, Dbpedia data itself is not publicly editable. freebase (http://
freebase.com/) is a database of linked data where users can add and edit
information directly. That does not mean that freebase contains only human-
added data: many entries are loaded automatically from external sources (such
as Wikipedia and Netflix) by specialized software tools. however, human
curation is an important aspect of the freebase philosophy.

freebase is not based on RDf, but its contents are still considered linked data
because a triple-like model is followed. Data is organized by topic, and typed
relations to other topics can be added; topics and triples are identified by uRLs.
In contrast to Dbpedia, each piece of data also contains fields detailing by
whom and when it was created. furthermore, facts are grouped by types. for
instance, people have the type People, which contains properties such as Date
of birth, Gender, and Children. These properties are not always filled in for all
members of the People type; they just provide an easy template for editors to
encourage them to use the correct properties.

Let’s have a look at the page for Pablo Picasso on freebase. you can visit it
directly at https:// www. freebase.com/m/060_7 or search through the homepage
https:// www. freebase.com/ for the artist’s name. This page starts with an image
and an abstract of the topic, as well as various links to pages on the web about
the same topic. In the ‘Properties’ tab below, we see all data on Picasso,
grouped by type that belong to categories. The first type is Topic and lists
general information such as name, description, website and notability. These
properties apply to all topics on freebase. Scrolling down the page, we note
other types such as Person and Visual Artist, as well as Literature Subject and
Film Actor. It might seem strange to label Picasso as a film actor, but this is
actually merely a grouping of properties per topic. As we expect from linked
data, clicking values leads to the information pages about the subjects.
hovering over types and relationships also reveals their properties.

on the top of the page, we can see different tabs. The default view is the
Properties view. The I18n tab (an abbreviation of ‘Internationalization’) shows
attributes with multi-language fields, such as transliterations of Picasso’s name
in different languages. The Keys tab lists different identifiers of the subject,
together with their namespace and who created them. finally, the Links tab
shows a tabular overview of all properties of the subject, together with the

62 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 62

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

person who added or last edited them and the modification date. This can also
serve as a history of all data about the topic.

freebase is more human-targeted than Dbpedia, as the pages are designed to
be browsed and edited easily, whereas Dbpedia offers primarily data tables. This
is already apparent from freebase’s homepage, which allows you to navigate data
in an interest-driven way. Similarly to Dbpedia, data about topics is also offered
in RDf, although this might not be obvious at first sight. Starting from the regular
uRL for a topic such as https://www. freebase.com/m/060_7, you can obtain the
RDf version by changing the uRL to http://rdf.freebase. com/ rdf/m.060_7.

7.3.2 Querying Freebase

freebase does not support SPARQL queries; rather, it uses its own query
language, MQL, which is based on JSoN. The reason for this is historical;
SPARQL was not yet standardized when freebase came into existence. The
query form of freebase is located at https://www.freebase.com/query.

The following query retrieves all personal data about Pablo Picasso:

{

"name": "Pablo Picasso",

"type": "/people/person",

"*": null

}

The idea is to pass a template to the query engine, and all empty fields will be
filled out in reply. The fields name and type narrow the query down to a single
topic. The field * (‘all’) with value null (‘a single unknown value’) instructs
freebase to select all values that belong to this topic. The result is a JSoN
document similar to the following:

{

"result": {

"place_of_birth": "Málaga",

"id": "/en/pablo_picasso",

"parents": [

"José Ruiz y Blasco",

"María Picasso y López"

],

"gender": "Male",

...

The results you receive depend on the type you specify. If we want to retrieve

MoDeLLING 63

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 63

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

properties about Picasso’s work as an artist, we set the type accordingly:

{

"name": "Pablo Picasso",

"type": "/visual_art/visual_artist",

"*": null

}

This then results in the following data:

{

"result": {

"type": "/visual_art/visual_artist",

"id": "/en/pablo_picasso",

"name": "Pablo Picasso",

"art_forms": [

"Painting",

"Sculpture",

"Ceramic art",

...

If we are interested in specific properties, we can specify them in the template.
for instance, to only show the artworks by Picasso:

{

"id": "/en/pablo_picasso",

"type": "/visual_art/visual_artist",

"artworks": []

}

The two square brackets [] denote an empty list (‘multiple unknown values’),
which will be filled out by the query engine:

{

"result": {

"id": "/en/pablo_picasso",

"type": "/visual_art/visual_artist",

"artworks": [

"Guernica",

"Garçon à la pipe",

"Les Demoiselles d’Avignon",

...

64 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 64

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

Note that a null value would not have worked here, because there is more
than one artwork.

If we want more details on the artworks, we have to extend the template.
for instance, to retrieve all artwork properties:

{

"id": "/en/pablo_picasso",

"type": "/visual_art/visual_artist",

"artworks": [{ "*": null }]

}

Inside the list, we place a single template object whose properties will be filled
in. This returns an extensive list of all works and their properties. If we are only
interested in specific properties, we can name them as we did before:

{

"id": "/en/pablo_picasso",

"type": "/visual_art/visual_artist",

"artworks": [{ "name": null, "date_completed": null }]

}

The templating mechanism thus works on every label of the data. The
following query lists all of Picasso’s artworks with title and date:

{

"result": {

"artworks": [

{

"name": "Guernica",

"date_completed": "1937-06"

},

{

"name": "Garçon à la pipe",

"date_completed": "1905"

},

{

"name": "Les Demoiselles d’Avignon",

"date_completed": "1907"

},

...

The main difference between MQL and SPARQL is that SPARQL still employs

MoDeLLING 65

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 65

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

the triple model (with variables for unknowns), whereas MQL has proprietary
templating mechanisms.

7.4 Sindice, the semantic web index

7.4.1 Querying the entire web
So far, we have only been querying single datasets. however, the central idea
of linked data is of course to be able to cross dataset boundaries. on the web,
we mostly discover information through search engines, so analogously, a
search engine for linked data could help us find datasets and navigate to other
datasets from there.

Sindice (http://sindice.com) is an index of the semantic web. It collects
linked data in RDf and other formats, and helps you discover more resources.
for instance, we can inspect the data Sindice has about Picasso by putting
Picasso’s uRL, http://dbpedia.org/resource/Pablo_Picasso, into the text box
and clicking ‘Search’. even though Sindice finds hundreds of matching
documents, you might initially be disappointed by the results. While the
ranking of results on traditional search engines has considerably improved
over the past decades, raking of semantic data is still in its infancy. however,
going through the result pages, we discover various datasets that indeed
mention Pablo Picasso.

More targeted searches are possible through Sindice’s SPARQL endpoint at
http://sparql.sindice.com/. for instance, we can see what data Sindice has
available on Picasso:

SELECT ?s, ?p WHERE { ?s ?p dbpedia:Pablo_Picasso. }

In addition to a lot of data from Dbpedia, we also see triples from other datasets
such as the New York Times. The Sindice SPARQL endpoint is also still under
development, so not all triples that are available through the search function
can be found in the SPARQL endpoint. Another reason we do not see more data
is the issue of identity. Indeed, triples in Dbpedia are mostly of this form:

dbpedia:Pablo_Picasso dbpedia-owl:birthPlace dbpedia:Málaga.

dbpedia:Pablo_Picasso rdf:type dbpedia-owl:Artist.

however, in the New York Times dataset, triples use another uRL to represent
Picasso:

nytd:N855344257183137093 skos:prefLabel "Picasso, Pablo".

This is a common practice in linked data, since there is no central identity

66 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 66

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

authority. fortunately, both identifiers are connected together by an
owl:sameAs predicate:

nytd:N855344257183137093 owl:sameAs dbpedia:Pablo_Picasso.

Therefore, we can find more triples about Picasso by adapting our query.
Instead of demanding that the triple contain the Dbpedia identifier
dbpedia:Pablo_Picasso, we say that they can use any identifier, as long as it
corresponds to the same concept as dbpedia:Pablo_Picasso. In SPARQL, we
can express this as:

SELECT ?picasso, ?p, ?o

WHERE {

?picasso owl:sameAs dbpedia:Pablo_Picasso.

?picasso ?p ?o.

}

This instructs Sindice to find all ?picasso identifiers that have a owl:sameAs
relation to Dbpedia’s Picasso entry, and for each of them, find all matching
triples. We now retrieve results from the New York Times, yago, and several
other datasets. This provides an interesting opportunity to harmonize the
triples using one single identifier. Therefore, we can construct the triples while
explicitly using the Dbpedia identifiers as the subject:

CONSTRUCT { dbpedia:Pablo_Picasso ?p ?o. }

WHERE {

?picasso owl:sameAs dbpedia:Pablo_Picasso.

?picasso ?p ?o.

}

Note the explicit mention of dbpedia:Pablo_Picasso in the CONSTRUCT clause,
which ensures that all found triples use this identifier, no matter what dataset
they originate from.

7.4.2 Browsing Sindice through Sig.ma

While Sindice gives you a more raw view on the web’s data, Sig.ma
(http://sig.ma/) is an interface built on top of Sindice that lets you collect
information about a topic easily. Sig.ma looks through different data sources
using Sindice, but groups the information visually together, turning it into
a mash-up.

MoDeLLING 67

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 67

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

figure 2.5 shows the result of searching for http://dbpedia.org/resource/
Pablo_Picasso. on the left are the different pieces of information, grouped
together by category, starting with images at the top. on the right, we see
the sources that contributed to the information on the page. They consist of
the original uRL we entered, but also all uRLs that are mentioned on that
page. Scrolling down, we see many information sources, and if we hover above
them, the corresponding data sources are highlighted on the right. Similarly,
we can hover in the sources sidebar on the left to see which pieces of
information they contributed.

however, as you would expect, this mostly shows information associated with
the single identifier http://dbpedia.org/resource/Pablo_Picasso and so a lot of
potential sources are not included. Therefore, we can also search for the artist
by typing ‘Pablo Picasso’ in the search box, which will lead to much more data.
however, Sig.ma text search is a little liberal, so some data might only be
marginally relevant to Picasso. even worse, some data is simply incorrect because
the topic was not matched precisely. here are some examples we found:

• Picasso is created by ‘darj33ling’. upon closer inspection of the data
source containing this fact, it turns out that this actually refers to a slide
deck titled ‘Pablo Picasso’, created by a user account ‘darj33ling’.

• Picasso is 425 pixels wide, because a photograph of him is.
• Picasso is a product or service. This seems to come from an online shop

that sells puzzles with Picasso’s artworks on them.

68 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Figure 2.5 A search for http://dbpedia.org/resource/Pablo_Picasso on Sig.ma

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 68

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

This indicates the kind of problem that can occur when automatically
combining data from different sources. It also shows the importance of having
uRLs as identifiers on the semantic web instead of plain text. fortunately,
Sig.ma allows you to discard sources you do not trust by removing them from
the right sidebar. Additionally, you can add new data sources there. Sig.ma
will extract data from them on the fly and categorize it on the left.

All in all, Sig.ma is an exciting visualization of the possibilities of linked data,
because it connects so many sources together. If we understand its limitations
and are careful with selecting sources, very meaningful results can be generated.
Do try to put your own name in the search box, as there might even be linked
data sources about you that you weren’t aware of. And if you have your own
data, you can submit it to Sindice so it will be included in Sig.ma results.

Notes

1 We based our overview of data modelling on chapters from Ramsay (2004) and
Segaran, Evans and Taylor (2009).

2 See https://en.wikipedia.org/wiki/Law_of_the_instrument.
3 You are not strictly required to add the PREFIX declarations here, as DBpedia
inserts them automatically for its common prefixes. However, not all SPARQL
endpoints support this and so, in general, always include all declarations (even
though we will not repeat them in this book due to space constraints).

4 At least, a triple can only occur once in the same graph. Triple stores might contain
different graphs, but this is a different story altogether.

References

Berners-Lee, T. (2006) Linked Data,
http://www.w3.org/DesignIssues/LinkedData.html.

Berners-Lee, T., Hendler, J. and Lassila, O. (2001) The Semantic Web, Scientific
American, 284 (5), 34–43.

Boiko, B. (2005) Content Management Bible, Wiley.
Bray, T., Hollander, D., Layman, A. and Tobin, R. (2006) Namespaces in XML 1.1, 2nd
edn, W3C Recommendation, http://www.w3.org/TR/xml-names11/.

Lynden, A. and Fenn, J. (2003) Understanding Gartner’s Hype Cycles, Technical
Report, Gartner.

Manovich, L. (2001) The Language of New Media, MIT Press.
Ramsay, S. (2004) A Companion to Digital Humanities, Blackwell, chapter on
Databases.

Segaran, T., Evans, C. and Taylor, J. (2009) Programming the Semantic Web, O’Reilly.
Severance, C. (2012) Discovering JavaScript Object Notation, Computer, 45 (4),
6–8.

MoDeLLING 69

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 69

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

Shafranovich, Y. (2005) Common Format and MIME Type for Comma-separated Values
(CSV) Files: request for comments 4180, Internet Engineering Task Force,
http://www.ietf.org/rfc/rfc4180.txt.

70 LINkeD DATA foR LIbRARIeS, ARChIVeS AND MuSeuMS

Van Hooland & V Linked data PROOF 06 30/05/2014 15:31 Page 70

For more Facet books and to order online visit: http://www.facetpublishing.co.uk

